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Abstract
With agents relyingmore andmore on information fromcentral servers rather than their
own sensors, knowledge becomes property not of a specific agent but of the data that the
agents can access. The article proposes a dynamic logic of data-informed knowledge
that describes an interplay between three modalities and one relation capturing the
properties of this form of knowledge. The main technical results are the undefinability
of two dynamic operators through each other, a sound and complete axiomatisation,
and a model checking algorithm.

1 Introduction

“I was desperate,” Mario Costeja Gonzalez says about his feelings after a client sug-
gested that Gonzalez googles his own name. Typing his full name into the search
engine would show that Gonzalez, a professional financial advisor, had his own house
foreclosed in 1998 [3]. That conversation between Gonzalez and his client led to the
famous 13 May 2014 “right to be forgotten” ruling by the European Court of Jus-
tice, ordering Google to remove the link to the foreclosure information. Once Google
removed the link from its search results, it made the foreclosure information, essen-
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Fig. 1 Epistemic Model

tially, no longer publicly available. As a result, knowing the name of Mr Gonzalez
no longer revealed the discrediting information about his past. But the story of Mr
Gonzalez does not end here. His legal case became widely discussed in the media,
which itself made enough information publicly available for people to be able to learn
about the 1998 foreclosure of his house. Subsequently, Mr Gonzalez tried and failed
to conceal the information about his legal case from public knowledge1.

Google’s publicising information about Mr Gonzalez’s foreclosure, then removing
it from the search results, and then publicising it again as the court case information are
examples of public revelations and concealments that affect knowledge. In this article,
we propose a dynamic epistemic logic that captures the properties of the interplay
between knowledge and the public epistemic actions of revelation and concealment.

1.1 Data-Informed Knowledge

Traditionally, knowledge has been associated with individual agents. However, in the
real world, just like in Mr Gonzalez’s example, the agents rely more and more on
access to data on servers and in databases rather than their own observations. In such
a setting, it is more natural to associate knowledge with data rather than individual
agents. In a previous work, we introduced the term data-informed knowledge to refer
to such form of knowledge [24].

Formally, data-informed knowledge could be defined using epistemic models like
the one depicted in Fig. 1. This model has four possible worlds: w1, w2, w3, and w4
and two data variables: x and y. Data variables can be Boolean, integer, strings, or
any other type. We assume that each data variable has a value in each possible world.
However, as we will see later, the specific values of data variables are not important
for the definition of data-informed knowledge. It is only important in which worlds the
values are different. We say that two worlds are indistinguishable by a data variable
if the variable has the same value in both worlds. The indistinguishability relation for
each data variable is shown in Fig. 1 using dashed lines. For example, data variable x
in this epistemic model has the same value in worlds w2, w3, w4 and a different value
in world w1.

Note that atomic proposition p is true in worlds w2 and w3 and is false in worlds
w1 and w4, see Fig. 1. Recall that the value of data variable x in world w1 is unique to
this world. Thus, in worldw1, knowing just the value of x in the current world informs
the knowledge that proposition p is false in the current world. We write this as:

w1, ∅ � Kx¬p.

1 http://cyberlaw.stanford.edu/blog/2015/10/no-more-right-be-forgotten-mr-costeja-says-spanish-data-
protection-authority
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We will explain the meaning of the symbol ∅ in the above statement later. Observe
that although proposition p is true in world w2, it is not true in world w4, which is
indistinguishability from the world w2 by data variable x . Thus, in world w2 knowing
just the value of x in the current world does not inform the knowledge that proposition
p is true in the current world:

w2, ∅ � ¬Kx p. (1)

Imagine next that the value of data variable y is publicly revealed (announced). In
this case, knowing the value of variable x alone in world w2 informs the knowledge
of p. Indeed, only worlds w2 and w3 are indistinguishability from world w2 by data
variable x and y, and in both of these worlds atomic proposition p is true. Thus, if the
value of data variable y is publicly announced, then, in world w2, knowing just the
value of x in the current world informs the knowledge that proposition p is true in the
current world:

w2, {y} � Kx p. (2)

In general, we consider the satisfaction relation w,U � ϕ where U is a finite set of
data variables. We read it as “formula ϕ is satisfied in worldw when the set of publicly
revealed data variables is U”. Using essentially the same argument as the one we use
to justify statement (2), we can also show that

w2, {x} � Ky p.

Finally, note that even if no data variable is publicly revealed, then knowing the values
of both data variables, x and y, in world w2 informs that p is true in the current world:

w2, ∅ � Kx,y p.

In this article, we consider modality KX for an arbitrary dataset (a finite set of data
variables) X . We read KXϕ as “dataset X informs the knowledge of statement ϕ”. We
also call KX a “data-informed knowledge modality”.

Grossi, Lorini, and Schwarzentruber proposed Ceteris Paribus Logic that describes
the properties of modality KX when X is a set of Boolean variables [21]. Baltag and
van Benthem considered a modality similar but not identical to KX [6]; we compare
our work with theirs in Section 6. We previously proposed an axiomatisation of the
interplay between modality KX and a data-informed coalition power modality [24]. In
particular, we observed that KX is an S5modality. We also introduced and axiomatised
trust-based belief modality BTXϕ that stands for “under the assumption of trustworthi-
ness of dataset T , dataset X informs the belief in statement ϕ” [25]. The expression
B∅

X ϕ is equivalent to KXϕ.

1.2 Information Dynamics: Revelations and Concealments

One of the main contributions of this article is a sound and complete logical system
that combines the data-informed knowledgemodality KX withmodalities representing
epistemic events. We consider two such modalities. The first of them represents pub-
lic announcements of data. We call such announcements revelations. This modality
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was first proposed by van Eijck, Gattinger and Wang under the name “public inspec-
tion” [14]. For any dataset X and any formula ϕ, we write [X ]ϕ if formula ϕ becomes
true after a public revelation of the values of all variables in dataset X . For example,
consider world w2 in which no values have been publicly announced yet, see Fig. 1.
In this setting, after a public revelation of the value of variable y, knowing just the
value of x in the current world informs the knowledge of the fact that proposition p
is true in the current world:

w2, ∅ � [y]Kx p.
This statement follows from statement (2). Baltag and van Benthem have observed
that modality [X ] can be eliminated from the syntax of their logical system describing
KX -like modality [6]. In Section 6, we show that their result does not apply to our
system. Axiomatisation of revelation modality [X ] is not considered in [24] and is
only discussed as a possible future work in [25].

In this article, we propose a complementary modality of public concealment. We
write [X ]cϕ if formula ϕ becomes true after the values of all variables in dataset X are
removed frompublic access (concealed). For example, as it follows from statement (1),

w2, {y} � [y]c¬Kx p.

A real-world example of concealment is the removal of information (data) about Mr
Gonzalez’s foreclosure from theGoogle search results.We further analyse this example
in Section 3.

Public data revelation modality [X ]ϕ has its roots in the Public Announcement
Logic (PAL) [13, Chapter 4]. PAL extends the language of the epistemic logic with
a public announcement modality [ϕ]ψ which means “if truthful statement ϕ is pub-
licly announced, then statement ψ will become true”. Multiple extensions of Public
AnnouncementLogic are suggested.Wáng andÅgotnes add to it the distributed knowl-
edge modality [37].

Ågotnes, Balbiani, van Ditmarsch, and Seban propose a group announcement
modality 〈G〉ϕ that means “groupG can announce certain facts, individually known to
the members of the group, after which statement ϕ will be true” [1]. Although modal-
ity 〈G〉ϕ states that ϕ will become true after an announcement by group G, it does
not require ϕ to remain true after further announcements are made by agents outside
of group G. However, such requirement is imposed by modality 〈[G]〉ϕ introduced
by Galimullin and Alechina [17]. Plaza introduces expression Kva(x) meaning that
agent a knows the value of variable x [29, 30]. Wang and Fan propose a logical system
that combines the public announcement modality with knowing data expressions [35].
In [36], they extend the language by the conditional knowledge expression Kva(ϕ, x)
that stands for “agent a knows the value of x assuming ϕ is true”.

Operation “forgetting of variables” has been considered in [27, 32] without inter-
preting it as a modality. The terms “revelation” and “concealment” that we use in this
article were proposed by van der Hoek, Iliev, and Wooldridge in their work on private
revelations and concealments [23]. In that paper, they consider modalities [r(p, a)]ϕ
and [c(p, a)]ϕ. The first (second) of them stands for “formula ϕ is true after the value
of atomic proposition p is privately revealed to (concealed from) agent a”. Our public
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revelation event is significantly different from their private revelation because public
revelation creates common knowledge of the revealed values. Given how private con-
cealments are defined in [23], our public concealments could be expressed through
theirs by concealing the same data set from each agent. Naumov and Tao assumed
that there is a cost associated with the concealment of each data variable [28]. They
proposed a “hiding” modality Hq

Aϕ that means that coalition A can hide from public
knowledge that statement ϕ is true by concealing some dataset at cost q. Unlike our
modality [X ]cϕ, their modality Hq

Aϕ does not explicitly mention the dataset being
concealed.

1.3 Functional Dependency

One of the advantages of our data-centric approach to epistemology is that it allows
extensions by data-specific operators that do not have agent-based equivalents. An
important example of such an operator is Armstrong’s functional dependency relation
X � Y between two datasets [4]. Informally, X � Y means that the values of the
variables in dataset X functionally determine the values of the variables in dataset Y .
We also say that dataset X informs dataset Y . There are twoways inwhich “determine”
could be interpreted: local and global. Recall that in the epistemic model depicted in
Fig. 1, variable x has two values: one in world w1 and another in worlds w2, w3,
and w4. Thus, in world w1, the value of variable x uniquely determines the value of
variable y (the one that y has in world w1). At the same time, the value of x in world
w2 does not uniquely determine the value of y because worlds w2 and w4 have the
same value of x , but different values of y. We refer to this as local dependency and
write it as

w1, ∅ � x � y

w2, ∅ � ¬(x � y).

Global dependency is local dependency in every world of the model. As we show
in Section 2, global dependency is expressible through local dependency and data-
informed knowledge modality.

Armstronggave a soundandcomplete axiomatisationof this relation [4].His axioms
became known in database literature as Armstrong’s axioms [18, p. 81]. Beeri, Fagin,
and Howard [9] have suggested a variation of Armstrong’s axioms that describe prop-
erties of multi-valued dependence. Baltag proposed a logical system for expression
X �a Y , that stands for “agent a knows how to compute dataset Y based on dataset
X” [5]. A connection between Armstrong axioms and strategies in imperfect infor-
mation setting is discussed in [12].

Dependency x � y between single variables x and y could be expressed in the
dynamic epistemic logic of “knowing the value” [14]. Namely, x � y is equivalent
to [x]Kv(y), where Kv(y) stands for “variable y is publicly known”. More generally,
if X and Y are finite sets {x1, . . . , xm} and {y1, . . . , yn} respectively, then X � Y is
equivalent to [x1] . . . [xm] ∧

i≤n Kv(yi ). Another approach to dependency is proposed
in Dependence Logic [34].
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The functional dependency relation � is present in the logical system [24] that
describes the interplay between KX and data-informed strategic power. Baltag and
van Benthem include it into the logical system that describes the properties of their
KX -like modality [6]. The language of Logic of Revelation and Concealment [23]
does not include functional dependency, perhaps because it only deals with Boolean
variables. This relation is also only discussed in the future work section of the paper
on trust-based beliefs [25].

1.4 Contribution and Outline

As discussed in the previous subsections, data-informed knowledge, revelations, con-
cealments, and functional dependencies have been studied before. We summarise
these works in Fig. 2. The original contribution of this work is describing the inter-
play between these notions through a complete logical system and a model checking
algorithm. The system contains new and non-trivial axioms and inference rules not
present in the existing literature. The proof of completeness significantly modifies the
existing proof techniques from the literature.

The article is organised as follows. In the section that follows, we define the syn-
tax and give the formal semantics of our system. Then, we show how our opening
Gonzalez example can be formalised in our setting. Section 4 shows that revelation
and concealment modalities are not definable through each other. In Section 5, we
list the axioms and inference rules. Then, in Section 6, we give a detailed comparison
between our logical system and the Simple Logic of Functional Dependence [6]. We
prove the soundness of our axioms and rules in Section 7. In Section 8, we show its
completeness, and in Section 9, we discuss and analyse a model checking algorithm
for this system. Section 10 discusses the applications of our system to reasoning about
causality. Section 11 concludes.

2 Syntax and Semantics

In this section, we introduce the class of formal models and use it to give a semantics
of our logical system. Throughout most of the article (until Section 9) we assume a
fixed finite set of data variables V and a fixed set of atomic propositions.

Fig. 2 Concepts covered in closely related literature
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Intuitively, we think about data variables as having “values”. However, as we have
seen in our introductory example depicted in Fig. 1, for us, it is only important to know
in which worlds the values of any given variable are different. For this reason and to
keep the presentation more succinct, we formally model data variables as equivalence
relations on the set of epistemic worlds. Informally, two worlds are ∼x -equivalent if
the value of data variable x in both worlds is the same.

Definition 1 A triple (W , {∼x }x∈V , π) is called an epistemic model, when

1. W is a (possibly empty) set of worlds,
2. ∼x is an “indistinguishability” equivalence relation on setW for each data variable

x ∈ V ,
3. π(p) ⊆ W × P(V ).

In the epistemic model depicted in Fig. 1, atomic proposition p is true in worlds
w2 and w3 and is false in worlds w1 and w4; the value of this proposition does not
depend on the revelations made in the world. In other words, in this model, atomic
proposition p captures a property of the world. In Definition 1, we have chosen a more
general approach where atomic propositions could express a property of the world
and the public revelations made in this world. For example, an atomic proposition
can be the statement “it has already been publicly revealed that Gonzalez owned the
house”. To do this, we define π(p) as a set of pairs (w,U ), where w is a world and
U is the set of all variables that have been publicly revealed. We further discuss this
after Definition 2 and in Section 6.

The language � of our logical system is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ → ϕ | KXϕ | [X ]ϕ | [X ]cϕ | X � Y ,

where p is an atomic proposition and X ,Y ⊆ V are datasets. We read formula KXϕ

as “dataset X informs the knowledge of statement ϕ”, formula [X ]ϕ as “formula ϕ is
true after a public revelation of dataset X”, formula [X ]cϕ as “formula ϕ is true after a
public concealment of dataset X”, and X �Y as “the values of the variables in dataset
X determine the values of the variables in dataset Y ”. We assume that conjunction,
disjunction, and biconditional are defined in the standard way.

The definition below specifies the formal semantics of this language with respect
to the epistemic models. We write w ∼X u if w ∼x u for each data variable x ∈ X .

Usually, the satisfaction relation is defined in modal logics as a relation between a
world and a formula. In our case, it is a ternary relation between a world w, a dataset
U , and a formula ϕ. Informally, it means that formula ϕ is true after dataset U has
been publicly revealed in world w.

Definition 2 For any world w ∈ W , any dataset U ⊆ V , and any formula ϕ ∈ �,
satisfaction relation w,U � ϕ is defined as follows

1. w,U � p if (w,U ) ∈ π(p),
2. w,U � ¬ϕ if w,U � ϕ,
3. w,U � ϕ → ψ if w,U � ϕ or w,U � ψ ,
4. w,U � KXϕ, if v,U � ϕ for each world v ∈ W such that w ∼U∪X v,
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5. w,U � [X ]ϕ if w,U ∪ X � ϕ,
6. w,U � [X ]cϕ if w,U \ X � ϕ.
7. w,U � X � Y if w ∼Y v for each world v ∈ W such that w ∼U∪X v.

Traditionally, in modal logic, the satisfaction relation is defined as a relation between a
world and a formula. In this case, each modal formula expresses a property of worlds.
In our case, the satisfaction relation is a ternary relation between a world, a dataset,
and a formula. This means that modal formulae in our system express the properties
definable in terms of the world and the public revelations made in this world. To make
our logical system coherent (and closed with respect to substitution), we assume that
atomic propositions capture the properties of the type. This is the reason for defining
π(p) to be a subset of W × P(V ), see Definition 1.

Modality KX captures the knowledge informed by dataset X given that dataset U
has already been publicly revealed. In other words, the knowledge comes from both
datasets X and U . This explains the use of relation ∼X∪U in item 4 of the above
definition. Baltag and van Benthem considered a similar modality for a set of arbitrary
variable [6]. We compare our approaches in Section 6.

Informally, X � Y means that the values of the variables in dataset X function-
ally determine the values of the variables in dataset Y . The term “determine” can be
interpreted in two ways: globally (in each world) and locally (in the current world).
Item 7 of Definition 2 gives X � Y the local interpretation. Recall that V is the set of
all data variables. It is easy to see that w,U � [V ]cK∅[X ]ϕ means that w′, X � ϕ

for each world w′ of the model. Thus, the global interpretation could be expressed as
[V ]cK∅(X � Y ).

Note that the proposed logical system, in a sense, subsumes the standard epistemic
logic of agent-based distributed knowledge. Indeed, the semantics of our data variables
is defined through indistinguishability relations between worlds. To model an agent’s
knowledge, one can introduce a variable that represents “all that the agent knows”.
The indistinguishability relation of such a variable is exactly the indistinguishability
relation of the agent. If X is a set of such variables corresponding to different agents,
then the modality KX represents the distributed knowledge of these agents. Under such
an interpretation, operator X � Y means that group X distributively knows at least as
much as group Y . Modality [X ] corresponds to a public announcement of everything
that the group of agents X knows. The meaning of the modality [X ]c is perhaps less
intuitive.

3 Gonzalez Example

An epistemic model capturing our introductory example is depicted in Fig. 3. For the
sake of this example, we assume that there are only two agents, Don Quixote (DQ)
and Mario Costeja Gonzalez (MG), and four epistemic worlds: w1, w2, w3, and w4.
In Fig. 3, the financial advisor (either DQ or MG) is marked with the euro sign. The
former owner of the foreclosed house is marked with a key sign. The actual world is
w1 where MG is the financial advisor and the former owner.
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Fig. 3 The right to be forgotten epistemic model

We consider three data variables, “name”, “article”, and “case”. Data variable
“name” is the name of the financial advisor. Note that MG is the advisor in worlds
w1 and w2. Thus, these two worlds are not distinguishable by this data variable. We
denote this by a dashed line between worlds w1 and w2 labelled with the data variable
“name”. Data variable “article” is the content of the original article about the foreclo-
sure, which contains the name of the former owner. Because MG is the former owner
in worlds w1 and w3, the content of the article cannot be used to distinguish these two
worlds. Data variable “case” is the content of the legal case brought up by the former
owner to protect his privacy. The case also contains the name of the owner. Because
MG is the owner in worlds w1 and w3, the content of the legal case also cannot be
used to distinguish these two worlds.

Note thatw1, {article} � “the advisor had foreclosure”, see Fig. 3. Thus, by item 4
of Definition 2,

w1, {article} � Kname(“the advisor had foreclosure”) (3)

because there is only one world, namely w1 itself, which is indistinguishability by the
dataset {article, name} from world w1. In other words, once the content of the article
had been revealed by Google, everyone who knew the name of the financial advisor
knew that he had a foreclosure.

At the same time,

w1, ∅ � Kname(“the advisor had foreclosure”) (4)

by item 4 of Definition 2, because w2, ∅ � “the advisor had foreclosure” and
w1 ∼name w2, see Fig. 3. Thus, by item 2 and item 6 of Definition 2,

w1, {article} � [article]c¬Kname(“the advisor had foreclosure”).

123



In other words, after the article was concealed by Google following the court order,
the name of the advisor no longer informed the knowledge that his house had been
foreclosed. Similarly,

w1, {article} � [article]c[case]Kname(“the advisor had foreclosure”).

To say it the other way, after the case information became public, the name of the
advisor again informed the knowledge that his house had been foreclosed.

4 Undefinability

In this section, we prove that modalities [ ] and [ ]c are not definable through each
other. Of course, the operation “concealment” cannot be defined through operation
“revelation” because nomatter what you reveal, you never conceal anything. However,
this argument does not apply to statements containing these operations. Indeed, as an
operation, subtraction cannot be defined through addition, but any statement that uses
subtraction is equivalent to a statement that uses only addition. For example, the
statement x − y = z is equivalent to the statement x = y+ z. In this section, we show
that the situation is different for modalities [ ] and [ ]c. Each of these modalities can
express something not expressible through the other modality.

Instead of a more traditional bisimulation technique for proving undefinability, we
use a recently proposed truth sets algebra technique [26]. Unlike bisimulation, the
new technique is using a single model to prove an undefinability result. Without loss
of generality, assume that set of data variables V contains a single data variable x and
the set of atomic propositions contains a single atomic proposition p.

Definition 3 For any given epistemic model, the truth set �ϕ� of a formula ϕ ∈ � is
the set {(w,U ) | w,U � ϕ}.
Definition 4 Formulae ϕ,ψ ∈ � are semantically equivalent if �ϕ� = �ψ� for any
epistemic model.

Note that Definition 4 can be rephrased as follows: formulae ϕ,ψ ∈ � are seman-
tically equivalent when w,U � ϕ iff w,U � ψ for any world w of any epistemic
model and any dataset U ⊆ V .

4.1 Undefinability of modality [ ]c throughmodalities [ ] and K

To prove our first undefinability result, consider an epistemic model consisting of
two worlds, w1 and w2, distinguishable by variable x . That is, w1 �x w2. Also, let
π(p) = {(w1, ∅), (w1, {x}), (w2, {x})}.

To make the proof more readable, we visualise the truth sets of various formulae
using 2 × 2 diagrams as shown in Fig. 4. The rows of the diagram are labelled by
worlds and the columns of the diagrams are labelled by datasets. In our model, there
are only two worlds, w1 and w2, and two datasets, ∅ and {x}. If pair (w,U ) belongs
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Fig. 4 Towards the proof of Theorem 1

to a truth set, then we grey out the square of the diagram that corresponds to this pair.
In this proof, we will focus on the truth sets S1, . . . , S8, Q visualised in Fig. 4.

Lemma 1 �[∅] ϕ�, �[x] ϕ� ∈ {S1, . . . , S8} for any formula ϕ ∈ � such that �ϕ� ∈
{S1, . . . , S8}.
Proof Suppose that �ϕ� = S1. Thus,

w1, ∅ � ϕ, w1, {x} � ϕ, (5)

w2, ∅ � ϕ, w2, {x} � ϕ, (6)

see truth set S1 in Fig. 4. Hence, by item 5 of Definition 2,

w1, ∅ � [∅]ϕ, w1, {x} � [∅]ϕ,

w2, ∅ � [∅]ϕ, w2, {x} � [∅]ϕ.

Then, �[∅]ϕ� = S1, see again truth set S1 in Fig. 4. Thus, for any formula ϕ ∈ �, if
�ϕ� = S1, then �[∅] ϕ� = S1. In Fig. 4, we visualise this result by the directed loop
arrow from truth set S1 back to truth set S1 labelled with modality [∅].

Note also that parts w1, {x} � ϕ and w2, {x} � ϕ of statements (5) and (6),
respectively, by item 5 of Definition 2, imply that

w1,U � [x]ϕ and w2,U � [x]ϕ.

for any dataset U ∈ {∅, {x}}. Then, �[x]ϕ� = S2, see truth set S2 in Fig. 4. In Fig. 4,
we visualise this result by the directed arrow from truth set S1 to truth set S2 labelled
with modality [x].
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Therefore, if �ϕ� = S1, then �[∅] ϕ�, �[x] ϕ� ∈ {S1, . . . , S8} for any formula
ϕ ∈ �. The other seven cases are similar.We show the corresponding labelled directed
arrows in Fig. 4. ��

The proof of the next lemma is similar to the proof of Lemma 1, but it uses item 4
of Definition 2 instead of item 5.

Lemma 2 �K∅ϕ�, �Kxϕ� ∈ {S1, . . . , S8} for any formula ϕ ∈ � such that �ϕ� ∈
{S1, . . . , S8}.

For any set A of pairs (w,U ), where w is a world and U ⊆ V is a dataset, by A,
the complement of A, we denote the set of all pairs (w,U ) that do not belong to set
A.

Lemma 3 The set {S1, . . . , S8} is closed with respect to complement and union.

Proof The statement of the lemma could be easily verified by considering all possible
cases. For example, S1 = S5 and S5 ∪ S7 = S8, see Fig. 4. ��

Lemma 4 �ϕ� ∈ {S1, . . . , S8} for any formula ϕ ∈ � that does not use modality [ ]c.

Proof We prove the lemma by induction on the structural complexity of formula ϕ. If
ϕ is the atomic proposition p, then, by Definition 3 and Definition 2,

�ϕ� = �p� = π(p) = {(w1, ∅), (w1, {x}), (w2, {x})} = S1 ∈ {S1, . . . , S8}.

Next, suppose that formula ϕ has the form X �Y , where X ,Y ⊆ {x}. Observe that,
�∅ � ∅� = �x � ∅� = �x � x� = S2 by Definition 3 and Definition 2. Additionally,
�∅�x� = S4 by the assumptionw1 �x w2 and the sameDefinition 3 andDefinition 2.
Thus, ϕ ∈ {S1, . . . , S8}.

If formula ϕ is a negation or an implication, then the statement of the lemma follows
from Lemma 3 and the induction hypothesis because �¬ψ� = �ψ� and �ψ → χ� =
�ψ� ∪ �χ�.

Finally, if formula ϕ has either the form [X ]ψ or KXψ , then the statement of
the lemma follows from the induction hypothesis and either Lemma 1 or Lemma 2,
respectively. ��

Lemma 5 �[x]c p� /∈ {S1, . . . , S8}.

Proof By the choice of the epistemic model, item 6 of Definition 2, and Definition 3,
the set �[x]c p� is equal to set Q depicted on the right-most diagram in Fig. 4. ��

The next theorem follows from the two lemmas before and Definition 4.

Theorem 1 (undefinability) Formula [x]c p is not semantically equivalent to any for-
mula in language � that does not use modality [ ]c.
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Fig. 5 Towards the proof of Theorem 2

4.2 Undefinability of [ ] throughmodalities [ ]c and K

To prove that revelation modality cannot be defined through concealment modal-
ity, we consider a model like the one used in Section 4.1, except π(p) =
{(w1, ∅), (w1, {x}), (w2, ∅)} and use truth sets as shown in Fig. 5. The diagram
labelled as Q in Fig. 5 visualises the truth set of formula [x]p.

The proof of the following theorem is similar to the proof for Theorem 1, but we
use Fig. 5 instead of Fig. 4.

Theorem 2 (undefinability) Formula [x]p is not semantically equivalent to any for-
mula in language � that does not use modality [ ].

5 Axioms

In addition to propositional tautologies in language�, our logical system contains the
following axioms.

1. Reflexivity: X � Y , where Y ⊆ X ,
2. Augmentation: X � Y → (X ∪ Z � Y ∪ Z),
3. Transitivity: X � Y → (Y � Z → X � Z),
4. Truth: KXϕ → ϕ,
5. Negative Introspection: ¬KXϕ → KX¬KXϕ,
6. Distributivity: �(ϕ → ψ) → (�ϕ → �ψ), where � ∈ {KX , [X ], [X ]c},
7. Monotonicity: X � Y → (KYϕ → KXϕ),
8. Introspection of Dependency: X � Y → KX (X � Y ),
9. Partial Revelation: (X ∪ Y ) � Z ↔ [X ](Y � Z),
10. Empty Dataset: �ϕ ↔ ϕ, where � ∈ {[∅], [∅]c},
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11. Negation: ¬�ϕ ↔ �¬ϕ, where � ∈ {[X ], [X ]c},
12. Composition: [X ][Y ]ϕ ↔ [X ∪ Y ]ϕ and [X ]c[Y ]cϕ ↔ [X ∪ Y ]cϕ,
13. Inversion: [X ][X ]cϕ ↔ [X ]cϕ and [X ]c[X ]ϕ ↔ [X ]ϕ,
14. Commutativity: �X�Yϕ ↔ �Y�Xϕ, if sets X and Y are disjoint and �X ∈

{[X ], [X ]c}, �Y ∈ {[Y ], [Y ]c},
15. Epistemic Commutativity: KX∪Y [Y ]ϕ ↔ [Y ]KXϕ,

KX [Y ]cϕ → [Y ]cKX∪Yϕ, and [Y ]cKXϕ → KX [Y ]cϕ,
16. Powerset:

∧
U⊆V [V ]c[U ]ϕ → ϕ.

The Reflexivity, Augmentation, and Transitivity axioms are the standard axioms
of functional dependency [4]. The Truth and the Negative Introspection axioms as
well as the KX part of the Distributivity axiom are the standard principles of S5 epis-
temic logic [15] restated for data-informed knowledge. The Distributivity axioms for
modalities [X ] and [X ]c are straightforward.

The Monotonicity axiom states that if, in the current world, the values of variables
in dataset X determine those in dataset Y and the values of the variables in dataset Y
inform the knowledge of ϕ, then those in dataset X also inform the knowledge of ϕ.

Recall that X � Y denotes local functional dependency. In other words, it means
that the values of the variables in dataset X in the current world determine the values
of the variables in the dataset Y . In general, X � Y does not imply that X determines
Y in each world. However, it does imply that X determines Y in each world where
all variables in dataset X have the same values as in the current world. Hence, X � Y
implies that X determines Y in each X -indistinguishability world. This property is
captured in the Introspection of Dependency axiom.

The Partial Revelation axiom has two parts. The first of them states that if the
knowledge of the values of the variables in dataset X ∪ Y is enough to determine the
values of the variables in dataset Z , then after a public revelation of dataset X , the
knowledge of the values of the variables in dataset Y alone is enough to determine the
values of the variables in dataset Z . The second part states the converse.

The EmptyDataset axiom states that a public revelation or concealment of an empty
dataset does not affect the validity of any formula.

The Negation axiom states that a formula does not hold after a revelation (conceal-
ment) if and only if the negation of the formula holds after the revelation (concealment).
It captures the fact that revelations and concealments are deterministic epistemic
actions.

The Composition axiom states that consecutive revelations (concealment) of two
datasets are equivalent to a single revelation (concealment) of the union of these
datasets.

Intuitively, revelation and concealment are “opposite” operations. However, they
are not opposite from the algebraic point of view. The connection between them in
the modal language is captured by the Inversion axiom. In algebraic terms, these
operations form an inverse semigroup [11, p.40] with respect to composition.

The Commutativity axiom states that revelations and concealments of disjoint
datasets could be done in any order. The Epistemic Commutativity axiom describes
the laws of commutativity between the knowledge modality and the public revelation
and concealment modalities.
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The Powerset axiom captures the fact that V is the set of all data variables in
an epistemic model. Informally, it states that concealing the whole set V and then
revealing a datasetU results in ϕ being true no matter what datasetU ⊆ V is chosen,
then ϕ should have been true to start with. This axiom is true because the set of
currently revealed variables is one of such datasets U .

We write � ϕ and say that formula ϕ ∈ � is a theorem of our logical system if it
is provable from the above axioms using the Modus Ponens, the three forms of the
Necessitation:

ϕ, ϕ → ψ

ψ

ϕ

KXϕ

ϕ

[X ]ϕ
ϕ

[X ]cϕ

and the Concealed Monotonicity:

[X ]cϕ → [X ]cψ
[X ]cKYϕ → [X ]cKYψ

inference rules.
The Concealed Monotonicity inference rule describes an aspect of the interplay

betweenmodalitiesKX and [X ]c. To the best of our knowledge, this rule is not derivable
from the Epistemic Commutativity axiom.

In addition to the unary relation � ϕ, we also consider a binary relation F � ϕ

between a set of formulae F ⊆ � and a formula ϕ ∈ �. Statement F � ϕ is true if
formula ϕ is provable from the theorems of our logical system and the set of additional
assumption F using the Modus Ponens inference rule only. It is easy to see that ∅ � ϕ

iff � ϕ.

6 Comparison to the Simple Logic of Functional Dependence

As one can easily observe from Fig. 2, Baltag and van Benthem’s Simple Logic
of Functional Dependence [6] is the closest logical system to the one presented in
the current article. The fundamental difference between the two works is that our
system contains concealment modality [X ]c while their system does not. However,
there are also multiple technical choices made by them and us differently, which lead
to a significant difference in semantics, the axioms, and the properties of these two
systems. In this section, we discuss some of these choices and their consequences.

At the beginning of Section 2, we observed that there is no need to have explicit
values assigned to data variables in different worlds. Thus, following [24, 25], we
represent data variables as equivalence relations on the worlds. Driven perhaps by the
same minimalist’s desire, Baltag and van Benthem decided to keep the values of the
variables in the semantics, but to eliminate the worlds. Assuming that the set of all
data variables V is {x1, . . . , xn}, the satisfaction relation in their system is defined as
a relation v1, . . . , vn � ϕ between values v1, . . . , vn of the variables x1, . . . , xn and
a formula ϕ. In essence, in their setting, a tuple of values v1, . . . , vn plays the role
of a world. To avoid trivialisation, they assume that not all combinations of values,
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generally speaking, are possible. It’s an elegant approach, but this approach eliminates
the possibility of having multiple “worlds” with the same values of all data variables.
As a result, the data-informed knowledge modality KX in their system has some non-
S5 properties. For example, the formula ϕ → KVϕ is universally true under their
semantics. In our system, modality KX is an S5-modality.

In the Simple Logic of Functional Dependence, each formula can be transformed
into an equivalent form that does not contain public revelation modality [X ]. A similar
property holds for the original Public Announcement Logic (PAL) [13, Chapter 4],
but it is not true for our logical system. To understand why such transformation does
not work for our system, let’s first recall how this transformation works for formulae
in [6]. The transformation is based on the following equivalences valid in their logic:

[X ]p ≡ p, (7)

[X ](Y � Z) ≡ (X ∪ Y ) � Z , (8)

[X ]¬ϕ ≡ ¬[X ]ϕ, (9)

[X ](ϕ → ψ) ≡ [X ]ϕ → [X ]ψ, (10)

[X ]KYϕ ≡ KX∪Y [X ]ϕ. (11)

Equivalences (9) through (11) could be used to “push” the revelation modality [X ] to
the atomic level and equivalences (7) and (8) to eliminate this modality on the atomic
level.

There are two issues that prevent applying this technique to our system. First,
equivalence (7) is not valid in our system. Indeed, recall from our discussion after
Definition 1 that atomic propositions in our system capture properties of a world and
the public revelations made in this world. Thus, the validity of an atomic proposition
can change after a public revelation. This is not true in [6], where atomic propositions
capture properties of just worlds (or, to be exact, tuples of values v1, . . . , vn).

In classical PAL [13, Chapter 4], atomic propositions also capture properties of
worlds. So, a PAL traditionalist might argue that this is a problem of our own making.
We should just make the atomic propositions to be about worlds, and this will ensure
that the transformationworks in our system.This is not true because of the second issue:
the transformation does not work for the public concealment modality [X ]c. Namely,
to the best of our knowledge, an equivalence-like statement (11) does not exist for the
concealmentmodality. There are two distinct versions of the Epistemic Commutativity
axiom for concealment: KX [Y ]cϕ → [Y ]cKX∪Yϕ and [Y ]cKXϕ → KX [Y ]cϕ, but
neither of them is an equivalence statement. The lack of such an equivalence prevents
the elimination of the concealment modality in our system. It also highlights the
significant difference between [6] and the present work.

7 Soundness

In this section, we show the soundness of our logical system, which is stated as The-
orem 3 at the end of this section. The soundness of the Truth, Negative Introspection,
Monotonicity,Distributivity, EmptyDataset,Composition, andCommutativity axioms
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is straightforward. Below we prove the soundness of the remaining axioms as separate
lemmas.

Lemma 6 w,U � [X ]ϕ iff w,U � [X ]¬ϕ.

Proof By item 5 of Definition 2, the statement w,U � [X ]ϕ is equivalent to w,U ∪
X � ϕ. The latter statement is equivalent tow,U ∪ X � ¬ϕ by item 2 of Definition 2.
In turn, the statement w,U ∪ X � ¬ϕ is equivalent to w,U � [X ]¬ϕ again by item
5 of Definition 2. ��

The proof of the next lemma is similar to the proof of the previous one except that
it uses item 6 of Definition 2 instead of item 5.

Lemma 7 w,U � [X ]cϕ iff w,U � [X ]c¬ϕ.

Lemma 8 w,U � [X ][X ]cϕ iff w,U � [X ]cϕ.
Proof The statement w,U � [X ][X ]cϕ is equivalent to w,U ∪ X � [X ]cϕ by item 5
of Definition 2. The latter statement is equivalent to w, (U ∪ X) \ X � ϕ by item 6 of
Definition 2. In turn, the statement w, (U ∪ X) \ X � ϕ is equivalent to w,U \ X � ϕ

because (U ∪ X) \ X ≡ U \ X . Finally, statement w,U \ X � ϕ is equivalent to
w,U � [X ]cϕ by item 6 of Definition 2. ��

The proof of the next lemma is similar to the proof of the previous one except that
it uses the set equivalence (U \ X) ∪ X ≡ U ∪ X instead of (U ∪ X) \ X ≡ U \ X .

Lemma 9 w,U � [X ]c[X ]ϕ iff w,U � [X ]ϕ.

Lemma 10 w,U � KX∪Y [Y ]ϕ iff w,U � [Y ]KXϕ.

Proof (⇒) :Supposew,U � [Y ]KXϕ. Thus, it follows thatw,U∪Y � KXϕ by item5
of Definition 2. Hence, by item 4 of Definition 2, there exists a world v ∈ W such
that w ∼U∪Y∪X v and v,U ∪ Y � ϕ. Then, v,U � [Y ]ϕ by item 5 of Definition 2.
Therefore, w,U � KX∪Y [Y ]ϕ by item 4 of Definition 2.

(⇐) : Assume that w,U � KX∪Y [Y ]ϕ. Thus, by item 4 of Definition 2, there exists
a world v ∈ W such that w ∼U∪X∪Y v and v,U � [Y ]ϕ. Hence, v,U ∪ Y � ϕ by
item 5 of Definition 2. Then, w,U ∪ Y � KXϕ by item 4 of Definition 2. Therefore,
w,U � [Y ]KXϕ again by item 5 of Definition 2. ��
Lemma 11 If w,U � KX [Y ]cϕ, then w,U � [Y ]cKX∪Yϕ.

Proof Let w,U � [Y ]cKX∪Yϕ. Thus, w,U \ Y � KX∪Yϕ by item 6 of Definition 2.
Hence, by item4ofDefinition 2, there exists aworld v ∈ W such thatw ∼(U\Y )∪X∪Y v

and v,U \ Y � ϕ. Then, v,U � [Y ]cϕ by item 6 of Definition 2. Note that U ∪ X ⊆
(U \ Y ) ∪ X ∪ Y . Thus, the statement w ∼(U\Y )∪X∪Y v implies that w ∼U∪X v.
Hence, w,U � KX [Y ]cϕ by item 4 of Definition 2. ��
Lemma 12 If w,U � [Y ]cKXϕ, then w,U � KX [Y ]cϕ.
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Proof Suppose that w,U � KX [Y ]cϕ. Thus, by item 4 of Definition 2, there is a
world v ∈ W such that w ∼U∪X v and v,U � [Y ]cϕ. Then, w ∼(U\Y )∪X v because
(U \ Y ) ∪ X ⊆ U ∪ X . Also, v,U \ Y � ϕ by item 6 of Definition 2. Hence,
w,U\Y � KXϕ by item4ofDefinition 2. Therefore,w,U � [Y ]cKXϕ byDefinition 2.
��
Lemma 13 If w,U � [V ]c[U ′]ϕ for each dataset U ′ ⊆ V , then w,U � ϕ.

Proof The assumption of the lemma implies, in particular, that w,U � [V ]c[U ]ϕ.
Thus, w,U \ V � [U ]ϕ by item 6 of Definition 2. Hence, w, ∅ � [U ]ϕ because
U ⊆ V . Therefore, w,U � ϕ by item 5 of Definition 2. ��

The soundness of the Modus Ponens and of the Necessitation axioms is straight-
forward. In the next lemma, we prove the soundness of the Concealed Monotonicity
inference rule.

Lemma 14 If w,U � [X ]cϕ→[X ]cψ for each world w ∈ W of each epistemic model
and each dataset U ⊆ V , then

w,U � [X ]cKYϕ → [X ]cKYψ

for each world w ∈ W of each epistemic model and any dataset U ⊆ V .

Proof Consider any world w ∈ W of an epistemic model and any dataset U ⊆ V .
Suppose that

w,U � [X ]cKYϕ. (12)

It suffices to show that w,U � [X ]cKYψ .
Suppose that w,U � [X ]cKYψ . Thus, w,U \ X � KYψ by item 6 of Definition 2.

Hence, by item 4 of Definition 2, there exists a world v ∈ W such that

w ∼(U\X)∪Y v (13)

and v,U \X � ψ . Then, v,U � [X ]cψ by item 6 of Definition 2. Thus, v,U � [X ]cϕ
by the assumption of the lemma. Hence, v,U \ X � ϕ by item 6 of Definition 2. Then,
w,U \ X � KYϕ by the assumption (13) and item 4 of Definition 2. Therefore,
w,U � [X ]cKYϕ by item 6 of Definition 2, which contradicts assumption (12). ��

The next strong soundness theorem follows from the lemmas above.

Theorem 3 (strong soundness) For any set of formulae F ⊆ �, any formula ϕ, any
worldw of an epistemic model, and any dataset U ⊆ V , ifw,U � f for each formula
f ∈ F and F � ϕ, then w,U � ϕ.

8 Completeness

In this section, we prove the completeness of our logical system using the canonical
model construction. The proof is divided into five subsections. First, we state sev-
eral auxiliary lemmas. Next, we define a dataset closure operation and prove its basic
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properties. After that, we specify a canonical modelM(F0) for any fixedmaximal con-
sistent set of formulae F0. Then, we establish several properties of this model required
for the proof of completeness. As usual in modal logic, the proof of completeness
relies on a “truth” lemma. In the fifth subsection, we prove this lemma and derive the
completeness theorem from it. We highlight the novel parts of the completeness proof
as they are being introduced.

8.1 Auxiliary Lemmas

In this subsection, we state auxiliary results that are used in the proof of completeness.
The first four statements are well-known properties whose proofs we omit.

Lemma 15 (Deduction) If F, ϕ � ψ , then F � ϕ → ψ .

Lemma 16 � KXϕ → KXKXϕ.

Lemma 17 For any formulae ϕ1, . . . , ϕn, ψ ∈ �, if ϕ1, . . . , ϕn � ψ , then
KYϕ1, .., KYϕn �KYψ , [X ]ϕ1, .., [X ]ϕn �[X ]ψ , and [X ]cϕ1, .., [X ]cϕn �[X ]cψ .

Lemma 18 (Lindenbaum)Any consistent set of formulae can be extended to amaximal
consistent set of formulae.

Lemma 19 For any datasets X ,Y ⊆ V , and any formulae ϕ1, . . . , ϕn, ψ ∈ �, if
[X ]cϕ1, . . . , [X ]cϕn � [X ]cψ , then [X ]cKYϕ1, . . . , [X ]cKYϕn � [X ]cKYψ .

Proof By propositional reasoning,
∧

i ϕi � ϕ j for each j ≤ n. Thus, by Lemma 17,

[X ]c
∧

i

ϕi � [X ]cϕ j

for each j ≤ n. Hence, by the assumption [X ]cϕ1, . . . , [X ]cϕn � [X ]cψ of the
lemma, [X ]c ∧

i ϕi � [X ]cψ . Then, � [X ]c ∧
i ϕi → [X ]cψ by Lemma 15. Thus, by

the Concealed Monotonicity inference rule,

� [X ]cKY
∧

i

ϕi → [X ]cKYψ. (14)

At the same time, ϕ1, . . . , ϕn � ∧
i ϕi by the laws of propositional reasoning. Hence,

KYϕ1, . . . , KYϕn � KY
∧

i ϕi by Lemma 17. Then, again by Lemma 17, it follows that
[X ]cKYϕ1, . . . , [X ]cKYϕn � [X ]cKY ∧

i ϕi . Therefore,

[X ]cKYϕ1, . . . , [X ]cKYϕn � [X ]cKYψ,

by statement (14) and the Modus Ponens inference rule. ��
The next lemma follows from theNecessitation inference rule and the Distributivity

axiom in the standard way.
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Lemma 20 For any formulae ϕ,ψ ∈ � and any X ⊆ V , if� ϕ → ψ , then� [X ]ϕ →
[X ]ψ and � [X ]cϕ → [X ]cψ .

Corollary 1 For any formulae ϕ,ψ ∈ � and any X ⊆ V , if� ϕ ↔ ψ , then� [X ]ϕ ↔
[X ]ψ , � [X ]cϕ ↔ [X ]cψ , and � [X ]c[Y ]ϕ ↔ [X ]c[Y ]ψ .

Lemma 21 � [X ](ϕ → ψ) ↔ ([X ]ϕ → [X ]ψ),
� [X ]c(ϕ → ψ) ↔ ([X ]cϕ → [X ]cψ), and
� [X ]c[Y ](ϕ → ψ) ↔ ([X ]c[Y ]ϕ → [X ]c[Y ]ψ).

Proof Note that the formulae ¬ϕ → (ϕ → ψ) and ψ → (ϕ → ψ) are propositional
tautologies. Hence, by the Necessitation inference rule,

� [X ](¬ϕ → (ϕ → ψ)) and � [X ](ψ → (ϕ → ψ)).

Thus, � [X ]¬ϕ → [X ](ϕ → ψ) and � [X ]ψ → [X ](ϕ → ψ) by the Distributivity
axiom and the Modus Ponens. Then, � ([X ]¬ϕ ∨[X ]ψ) → [X ](ϕ → ψ) by the laws
of propositional reasoning.Hence, by theNegation axiom and propositional reasoning,
� (¬[X ]ϕ ∨ [X ]ψ) → [X ](ϕ → ψ). Thus, again by propositional reasoning, �
([X ]ϕ → [X ]ψ) → [X ](ϕ → ψ). Therefore, by the Distributivity axiom and even
more propositional reasoning,

� [X ](ϕ → ψ) ↔ ([X ]ϕ → [X ]ψ).

The proof of the second part of the lemma is similar. The third part follows from
the first two parts by Corollary 1. ��
Lemma 22 � [V ]c[U \ X ]ψ ↔ [V ]c[U ][X ]cψ .

Proof Note that V = V ∪ X because X ⊆ V . Hence, the statement

[V ]c[U \ X ]ψ ↔ [V ∪ X ]c[U \ X ]ψ (15)

is a tautology. At the same time, by the Composition axiom,

� [V ∪ X ]c[U \ X ]ψ ↔ [V ]c[X ]c[U \ X ]ψ. (16)

Also, by the Commutativity axiom, Corollary 1, and because sets X and U \ X are
disjoint,

� [V ]c[X ]c[U \ X ]ψ ↔ [V ]c[U \ X ][X ]cψ. (17)

In addition, because X = (U ∩ X) ∪ (X \U ), the statement

[V ]c[U \ X ][X ]cψ ↔ [V ]c[U \ X ][(U ∩ X) ∪ (X \U )]cψ (18)

is also a tautology. At the same time, by the Composition axiom and Corollary 1,

� [V ]c[U \ X ][(U ∩ X) ∪ (X \U )]cψ ↔ [V ]c[U \ X ][U ∩ X ]c[X \U ]cψ. (19)
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Also, by the Inversion axiom and Corollary 1,

� [V ]c[U \ X ][U ∩ X ]c[X \U ]cψ
↔ [V ]c[U \ X ][U ∩ X ][U ∩ X ]c[X \U ]cψ. (20)

In addition, because (U \ X) ∪ (U ∩ X) = U , by the Composition axiom and
Corollary 1,

� [V ]c[U \ X ][U ∩ X ][U ∩ X ]c[X \U ]cψ
↔ [V ]c[U ][U ∩ X ]c[X \U ]cψ. (21)

Note also that (U ∩ X) ∪ (X \ U ) = X . Thus, by the Composition axiom and
Corollary 1,

� [V ]c[U ][U ∩ X ]c[X \U ]cψ ↔ [V ]c[U ][X ]cψ. (22)

Finally, observe that the statement of the lemma follows from statements (15), (16),
(17), (18), (19), (20), (21), and (22) by the laws of propositional reasoning. ��

8.2 Dataset Closure

An important idea used in our proof of completeness is “dataset closure”. Informally,
for each set of formulae F and each dataset X , by closure X∗

F we denote the set of all
data variables about which set F can prove that they are informed by set X . This notion
goes back to “saturated” sets in Armstrong’s article on functional dependency [4,
Section 6]. However, the prefix [V ]c and set F in the definition below are original to
the current article. Closures are used in Definition 7 of the next subsection to specify
the labels of the edges of a tree.

Definition 5 X∗
F = {x ∈ V | [V ]c(X � x) ∈ F} for any dataset X ⊆ V and any

maximal consistent set of formulae F ⊆ �.

In other words, the closure X∗
F is the set of all data variables that, according to

set F , are functionally determined by dataset X . Intuitively, such a set must include
variables from the dataset X itself. Next, we formally prove this.

Lemma 23 X ⊆ X∗
F .

Proof Consider any data variable x ∈ X . Thus, � X � x by the Reflexivity axiom.
Hence, � [V ]c(X � x) by the Necessitation inference rule. Then, [V ]c(X � x) ∈ F
because F is a maximal consistent set of formulae. Therefore, x ∈ X∗

F byDefinition 5.
��

Note that [V ]c(X�x) ∈ F for each data variable x ∈ X∗
F by Definition 5. The next

lemma shows that all such variables x could be brought together on the right-hand-side
of � expression.
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Lemma 24 F � [V ]c(X � X∗
F ).

Proof The set X∗
F is finite by Definition 5 and the assumption in Section 2 that set

V is finite. Let X∗
F be set {x1, . . . , xn}. Note that F � [V ]c(X � xi ) for each i ≤ n

by Definition 5. We prove by induction for each integer k such that 0 ≤ k ≤ n that
F � [V ]c(X � x1, . . . , xk).

Base Case: F � X � ∅ by the Reflexivity axiom. Hence, F � [V ]c(X � ∅) by the
Necessitation inference rule.

Induction Step: By the Augmentation axiom,

� X � x1, . . . , xk → X ∪ {xk+1} � x1, . . . , xk, xk+1.

and
� X � xk+1 → X � X ∪ {xk+1}.

Thus, by the Transitivity axiom and the laws of propositional reasoning,

� X � xk+1 → (X � x1, . . . , xk → X � x1, . . . , xk, xk+1).

Hence, by the Necessitation inference rule,

� [V ]c(X � xk+1→(X � x1, . . . , xk → X � x1, . . . , xk+1)).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

� [V ]c(X � xk+1) → [V ]c(X � x1, . . . , xk → X � x1, . . . , xk, xk+1).

Recall that xk+1 ∈ X∗
F . Thus, F � [V ]c(X � xk+1) by Definition 5. Hence, by the

Modus Ponens inference rule,

F � [V ]c(X � x1, . . . , xk → X � x1, . . . , xk, xk+1).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

F � [V ]c(X � x1, . . . , xk) → [V ]c(X � x1, . . . , xk, xk+1).

Note that F � [V ]c(X � x1, . . . , xk) by the induction hypothesis. Therefore, by the
Modus Ponens inference rule, F � [V ]c(X � x1, . . . , xk, xk+1). ��

8.3 Canonical Model

In this subsection, for any maximal consistent set of formulae F0 ⊆ �, we define the
canonical epistemic model M(F0) = (W , {∼x }x∈V , π). We define this model using
the tree construction that has been previously used in completeness proofs involving
distributed knowledge [16]. The addition of the prefix [V ]c in item 3 of Definition 6
is original to the current article.

123



Definition 6 Set of worldsW is the set of all sequences F0, X1, . . . , Xn, Fn where for
each i such that 1 ≤ i ≤ n,

1. set Fi ⊆ � is a maximal consistent set of formulae,
2. set Xi ⊆ V is a dataset,
3. {[V ]cϕ | [V ]cKXi ϕ ∈ Fi−1} ⊆ Fi .

If w = F0, X1, . . . , Xn, Fn and u = F0, X1, . . . , Xn, Fn, Xn+1, Fn+1, then we
say that worlds w and u are adjacent. Note that this adjacency relation forms an
(undirected) tree structure on set W . By hd(w) we denote the set of formulae Fn .

Definition 7 For any worlds

w = F0, X1, . . . , Xn, Fn ∈ W

u = F0, X1, . . . , Xn, Fn, Xn+1, Fn+1 ∈ W ,

the undirected edge (w, u) is labelled with a variable x ∈ V if x ∈ (Xn+1)
∗
Fn
.

It is convenient to intuitively visualise the worlds of the canonical model as paths
in the “Tree of Knowledge”, whose fragment is depicted in Fig. 6. For example, on
that figure, the world F0, X1, F1 is adjacent to the world F0, X1, F1, X5, F5 and the
edge between them is labelled with each variable in the dataset (X5)

∗
F1
.

Definition 8 w ∼x u if each edge of the unique simple path between nodes w and u
is labelled with data variable x .

Definition 9 π(p) = {(w,U ) | [V ]c[U ]p ∈ hd(w)}.

8.4 Canonical Model Properties

In this subsection, we establish the core properties of the canonical model that will be
used later in the proof of completeness. The first of these properties is captured in the
lemma below. It describes how formulae can be transferred between adjacent nodes
of the tree.

Lemma 25 [V ]cKYϕ ∈ Fn−1 iff [V ]cKYϕ ∈ Fn for any world F0, . . . , Xn, Fn, any
dataset Y ⊆ (Xn)

∗
Fn−1

, and any formula ϕ ∈ �, where n ≥ 1.

Fig. 6 Fragment of the tree of knowledge
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Proof (⇒) Note that � KYϕ → KYKYϕ by Lemma 16. Also,

� KYKYϕ → K(Xn)
∗
Fn−1

KYϕ

by the Monotonicity axiom and the assumption Y ⊆ (Xn)
∗
Fn−1

of the lemma. Thus,
by the laws of propositional reasoning,

� KYϕ → K(Xn)
∗
Fn−1

KYϕ.

Hence,
� Xn � (Xn)

∗
Fn−1

→ (KYϕ → KXnKYϕ)

by the Monotonicity axiom and propositional reasoning. Then, by the Necessitation
inference rule,

� [V ]c(Xn � (Xn)
∗
Fn−1

→ (KYϕ → KXnKYϕ)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

� [V ]c(Xn � (Xn)
∗
Fn−1

) → [V ]c(KYϕ → KXnKYϕ).

Hence, by Lemma 24 and the Modus Ponens inference rule,

Fn−1 � [V ]c(KYϕ → KXnKYϕ).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

Fn−1 � [V ]cKYϕ → [V ]cKXnKYϕ.

Thus, by the assumption [V ]cKYϕ ∈ Fn−1 of the case (⇒) and the Modus Ponens
rule, Fn−1 � [V ]cKXnKYϕ. Hence, [V ]cKXnKYϕ ∈ Fn−1 because set Fn−1 is maximal.
Therefore, [V ]cKYϕ ∈ Fn by item 3 of Definition 6.

(⇐) Suppose that [V ]cKYϕ /∈ Fn−1. Note that formula ¬KYϕ → KY¬KYϕ is an
instance of the Negative Introspection axiom. Also,

� KY¬KYϕ → K(Xn)
∗
Fn−1

¬KYϕ

by the Monotonicity axiom and the assumption Y ⊆ (Xn)
∗
Fn−1

of the lemma. Thus,
by the laws of propositional reasoning,

� ¬KYϕ → K(Xn)
∗
Fn−1

¬KYϕ.

Hence,
� Xn � (Xn)

∗
Fn−1

→ (¬KYϕ → KXn¬KYϕ)
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by the Monotonicity axiom and propositional reasoning. Then, by the Necessitation
inference rule,

� [V ]c(Xn � (Xn)
∗
Fn−1

→ (¬KYϕ → KXn¬KYϕ)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

� [V ]c(Xn � (Xn)
∗
Fn−1

) → [V ]c(¬KYϕ → KXn¬KYϕ).

Hence, by Lemma 24 and the Modus Ponens inference rule,

Fn−1 � [V ]c(¬KYϕ → KXn¬KYϕ).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

Fn−1 � [V ]c¬KYϕ → [V ]cKXn¬KYϕ. (23)

At the same time, the assumption [V ]cKYϕ /∈ Fn−1 of the case (⇐) implies that
¬[V ]cKYϕ ∈ Fn−1 because set Fn−1 is maximal. Hence, Fn−1 � [V ]c¬KYϕ by
the Negation axiom and propositional reasoning. Thus, by statement (23) and the
Modus Ponens rule Fn−1 � [V ]cKXn¬KYϕ. Then, because set Fn−1 is maximal.
[V ]cKXn¬KYϕ ∈ Fn−1. Hence, [V ]c¬KYϕ ∈ Fn by item 3 of Definition 6. Then,
Fn � ¬[V ]cKYϕ by the Deterministity axiom and propositional reasoning. Therefore,
[V ]cKYϕ /∈ Fn because set Fn is consistent. ��

Recall that there is a unique simple path between any two nodes of a tree. Thus,
by Definition 8, statement w ∼X u implies that each edge of the unique path between
nodes w and u is labelled with each variable in set X . Then, the above lemma can be
generalised from a property of two adjacent nodes to two arbitrary nodes as follows.

Corollary 2 [V ]cKYϕ ∈ hd(w) iff [V ]cKYϕ ∈ hd(u) for any worlds w, u ∈ W such
that w ∼Y u.

The next two lemmas are used during the induction step of the proof of the “truth
lemma” (Lemma 30).

Lemma 26 For any world w ∈ W and any formula ¬[V ]c[U ]KXϕ ∈ hd(w), there is
a world u ∈ W such that w ∼U∪X u and ¬[V ]c[U ]ϕ ∈ hd(u).

Proof First, we show that the set of formulae

G = {¬[V ]c[U ]ϕ} ∪ {[V ]cψ | [V ]cKU∪Xψ ∈ hd(w)} (24)

is consistent. Towards a contradiction, assume the opposite. Then, there are formulae

[V ]cKU∪Xψ1, . . . , [V ]cKU∪Xψn ∈ hd(w), (25)
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where [V ]cψ1, . . . , [V ]cψn � [V ]c[U ]ϕ. Thus, by Lemma 19,

[V ]cKU∪Xψ1, . . . , [V ]cKU∪Xψn � [V ]cKU∪X [U ]ϕ.

Hence, by assumption (25),

hd(w) � [V ]cKU∪X [U ]ϕ. (26)

At the same time,� [V ]cKU∪X [U ]ϕ → [V ]c[U ]KXϕ by the EpistemicCommutativity
axiom and Lemma 20. Thus, hd(w) � [V ]c[U ]KXϕ by statement (26) and the Modus
Ponens rule, which contradicts the assumption ¬[V ]c[U ]KXϕ ∈ hd(w) of the lemma
and the consistency of the set hd(w). Thus, set G is consistent.

By Lemma 18, set G can be extended to a maximal consistent set of formulae G ′.
Suppose that epistemic world w is the sequence F0, X1, . . . , Xn, Fn . Define world u
to be the sequence F0, X1, . . . , Xn, Fn,U ∪ X ,G ′. Note that u ∈ W by Definition 6,
statement (24), and the assumption G ⊆ G ′.

Observe that U ∪ X ⊆ (U ∪ X)∗Fn by Lemma 23. Hence, w ∼U∪X u by Defi-
nition 8 and the choice of sequence u. Finally, ¬[V ]c[U ]ϕ ∈ G ⊆ G ′ = hd(u) by
statement (24). ��
Lemma 27 If [V ]c[U ]KXϕ ∈ hd(w) and w ∼U∪X u, then [V ]c[U ]ϕ ∈ hd(u).

Proof Observe that the formula KU∪X [U ]ϕ ↔ [U ]KXϕ is an instance of the Epistemic
Commutativity axiom. Thus, � [V ]cKU∪X [U ]ϕ ↔ [V ]c[U ]KXϕ by Corollary 1.

Then, hd(w) � [V ]cKU∪X [U ]ϕ by the assumption [V ]c[U ]KXϕ ∈ hd(w) of the
lemma. Hence, because set hd(w) is maximal, [V ]cKU∪X [U ]ϕ ∈ hd(w). Then, by
Lemma 25 and the assumption w ∼U∪X u of the lemma,

[V ]cKU∪X [U ]ϕ ∈ hd(u). (27)

Note that KU∪X [U ]ϕ → [U ]ϕ is an instance of the Truth axiom. Thus, by Lemma 20,

� [V ]cKU∪X [U ]ϕ → [V ]c[U ]ϕ.

Then, hd(u) � [V ]c[U ]ϕ by statement (27) and the Modus Ponens inference rule.
Therefore, [V ]c[U ]ϕ ∈ hd(u) because set hd(u) is maximal. ��
Lemma 28 If [V ]c[U ](X � Y ) ∈ hd(w) and w ∼U∪X w′, then w ∼Y w′.

Proof We prove the lemma by induction on the length of the simple path between
vertices w and w′. If w = w′, then, vacuously, each edge along the simple path
between vertices w and w′ is labelled with each data variable. Hence, w ∼Y w′ by
Definition 8.

Suppose that w �= w′. Consider the unique simple path between vertices w and w′.
By the assumption w ∼U∪X w′ of the lemma and Definition 8, each edge along this
path is labelled with each data variable in set U ∪ X . Because w �= w′, there must
exist a vertex u ∈ W on the unique simple path between w and w′ such that vertices
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u and w′ are adjacent. Thus, each edge along the simple path between vertices w and
u is labelled with each data variable in set U ∪ X . Hence, by Definition 8,

w ∼U∪X u. (28)

Claim The edge between vertices u and w′ is labelled with each data variable in set Y .

Proof of Claim We consider the following two cases separately, see Fig. 7:

Case I: u = F0, X1, F1, . . . , Fn−1 and w′ = F0, X1, F1, . . . , Xn, Fn . Consider any
data variable y ∈ Y . By Definition 7, it suffices to show that y ∈ (Xn)

∗
hd(u). Note that� Y � {y} by the Reflexivity axiom. Then, by the Necessitation inference rule applied

twice,
� [V ]c[U ](Y � {y}). (29)

At the same time, by the Introspection of Dependency axiom,

� X � Y → KX (X � Y ).

Thus, by Lemma 20 applied twice,

� [V ]c[U ](X � Y ) → [V ]c[U ]KX (X � Y ).

Note that [V ]c[U ](X � Y ) ∈ hd(w) by the assumption of the lemma. Thus, by the
Modus Ponens inference rule,

hd(w) � [V ]c[U ]KX (X � Y ).

Hence, [V ]c[U ]KX (X � Y ) ∈ hd(w) because set hd(w) is maximal. Then, by
Lemma 27 and statement (28),

[V ]c[U ](X � Y ) ∈ hd(u). (30)

Recall that u is a vertex on the simple path connecting vertices w and w′ and all
edges along this path are labelled with variables from set X . Hence, X ⊆ (Xn)

∗
hd(u)

Fig. 7 Case I (left) and Case II (right)
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by Definition 7. Then, � (Xn)
∗
hd(u) � X by the Reflexivity axiom. Thus, by the Neces-

sitation inference rule applied twice,

� [V ]c[U ]
(
(Xn)

∗
hd(u) � X

)
. (31)

Finally, note that the following two formulae are instances of theTransitivity axiom:

(Xn)
∗
hd(u) � X →

(
X � Y → (Xn)

∗
hd(u) � Y

)
,

(Xn)
∗
hd(u) � Y →

(
Y � {y} → (Xn)

∗
hd(u) � {y}

)
.

Thus, by the laws of propositional reasoning,

(Xn)
∗
hd(u) � X , X � Y , Y � {y} � (Xn)

∗
hd(u) � {y}.

Then, by Lemma 19 applied twice,

[V ]c[U ]
(
(Xn)

∗
hd(u) � X

)
, [V ]c[U ](X � Y ), [V ]c[U ](Y � {y})

� [V ]c[U ]
(
(Xn)

∗
hd(u) � {y}

)
.

Hence, by statements (31), (30), and (29),

hd(u) � [V ]c[U ]
(
(Xn)

∗
hd(u) � {y}

)
.

Therefore, y ∈ (Xn)
∗
hd(u) by Definition 5.

Case II: w′ = F0, X1, F1, . . . , Fn−1 and u = F0, X1, F1, . . . , Xn, Fn . This case is
similar to the previous one, except that it uses the set hd(w′) instead of the set hd(u)

everywhere in the proof. ��
To finish the proof of the lemma, note that the simple path between vertices w and
u is shorter than the simple path between vertices w and w′. Hence, w ∼Y u, by
the induction hypothesis. Also, u ∼Y w′ by Claim 8.4 and Definition 8. Therefore,
w ∼Y w′ because relation ∼Y is transitive. ��
Lemma 29 If [V ]c[U ](X � Y ) /∈ hd(w), then there is a world w′ ∈ W such that
w ∼U∪X w′ and w �Y w′.

Proof Let state w be sequence F0, X1, . . . , Xn−1, Fn−1, Xn, Fn . Consider sequence

w′ = F0, X1, . . . , Xn−1, Fn−1, Xn, Fn,U ∪ X , Fn .

To prove that w′ ∈ W , consider any formula [V ]cKU∪Xϕ ∈ Fn . By item 3 of
Definition 6, it suffices to show that [V ]cϕ ∈ Fn . Indeed, � KU∪Xϕ → ϕ by the
Truth axiom. Thus, � [V ]cKU∪Xϕ → [V ]cϕ by Lemma 20. Hence, the assumption
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[V ]cKU∪Xϕ ∈ Fn implies Fn � [V ]cϕ by theModus Ponens inference rule. Therefore,
[V ]cϕ ∈ Fn because set Fn is maximal.

To prove w ∼U∪X w′, note that (U ∪ X) ⊆ (U ∪ X)∗Fn by Lemma 23. Thus, by
Definition 7, the edge between vertices w and w′ is labelled with each data variable
in set U ∪ X . Therefore, w ∼U∪X w′ by Definition 8.

Finally, we show that w �Y w′. By Definition 8, it suffices to prove that the simple
path between verticesw andw′ is not labelled by at least one variable from set Y . Then,
by Definition 7, it suffices to show that Y � (U ∪ X)∗Fn . Suppose the opposite. Thus,� (U ∪ X)∗Fn � Y by the Reflexivity axiom. Hence, by the Necessitation inference
rule,

� [V ]c (
(U ∪ X)∗Fn � Y

)
. (32)

Note that the following two formulae are instances of the Transitivity and the Partial
Revelation axioms, respectively:

(U ∪ X)�(U ∪ X)∗Fn →(
(U ∪ X)∗Fn �Y →(U ∪ X)�Y

)
,

(U ∪ X) � Y → [U ](X � Y ).

Thus, by the laws of propositional reasoning,

(U ∪ X) � (U ∪ X)∗Fn , (U ∪ X)∗Fn � Y � [U ](X � Y ).

Then, by Lemma 19,

[V ]c (
(U ∪ X) � (U ∪ X)∗Fn

)
, [V ]c (

(U ∪ X)∗Fn � Y
) � [V ]c[U ](X � Y ).

Thus, by statement (32),

[V ]c (
(U ∪ X) � (U ∪ X)∗Fn

) � [V ]c[U ](X � Y ).

Hence, Fn � [V ]c[U ](X � Y ) by Lemma 24. Thus, because set Fn is consistent,

[V ]c[U ](X � Y ) ∈ Fn = hd(w),

which contradicts the assumption [V ]c[U ](X � Y ) /∈ hd(w) of the lemma. ��

8.5 Final Steps

Next is the “truth lemma” for our construction. The prefix [V ]c[U ] distinguishes this
lemma from the standard truth lemma in modal logic.

Lemma 30 w,U � ϕ iff [V ]c[U ]ϕ ∈ hd(w), for each world w ∈ W, each dataset
U ⊆ V , and each formula ϕ ∈ �.

123



Proof We prove this statement by induction on the structural complexity of formula
ϕ. If formula ϕ is an atomic proposition, then the statement of the lemma follows from
item 1 of Definition 2 and Definition 9.

Suppose that formula ϕ has the form X � Y .
(⇒) : Assume that [V ]c[U ](X � Y ) /∈ hd(w). Thus, by Lemma 29, there is a world
w′ ∈ W such that w ∼U∪X w′ and w �Y w′. Therefore, w,U � X � Y by item 7 of
Definition 2.
(⇐) : Assume that [V ]c[U ](X � Y ) ∈ hd(w). Then, w ∼Y w′ for any world w′ ∈
W such that w ∼U∪X w′ by Lemma 28. Therefore, w,U � X � Y by item 7 of
Definition 2.

Suppose that formula ϕ has the form ¬ψ .
ByDefinition 2, the statementw,U � ¬ψ is equivalent to the statementw,U � ψ .

By the induction hypothesis, the last statement is equivalent to [V ]c[U ]ψ /∈ hd(w).
The statement [V ]c[U ]ψ /∈ hd(w) is equivalent to the statement hd(w) � ¬[V ]c[U ]ψ
because hd(w) is a maximal consistent set of formulae. The latter statement is equiv-
alent to the statement hd(w) � [V ]c¬[U ]ψ by the Negation axiom. The statement
hd(w) � [V ]c¬[U ]ψ is equivalent to the statement hd(w) � [V ]c[U ]¬ψ by the
Negation axiom and Corollary 1. Finally, because hd(w) is a maximal consistent set
of formulae, the last statement is equivalent to [V ]c[U ]¬ψ ∈ hd(w).

Suppose formula ϕ has the form ψ → χ . By Definition 2, the statement w,U �
ψ → χ is equivalent to the disjunction of the following statements: w,U � ψ and
w,U � χ . Note that, by the induction hypothesis, the disjunction of those two state-
ments is equivalent to the disjunction of the statement [V ]c[U ]ψ /∈ hd(w) and the
statement [V ]c[U ]χ ∈ hd(w). The latter is equivalent to hd(w) � ¬[V ]c[U ]ψ ∨
[V ]c[U ]χ because hd(w) is a maximal consistent set of formulae. In turn, the last
statement is equivalent to hd(w) � [V ]c[U ]ψ → [V ]c[U ]χ by propositional rea-
soning. Note that the previous statement is equivalent to hd(w) � [V ]c[U ](ψ → χ)

by Lemma 21 and propositional reasoning. Finally, the last statement is equivalent to
[V ]c[U ](ψ → χ) ∈ hd(w) because hd(w) is a maximal consistent set of formulae.

Suppose that formula ϕ has the form KXψ .
(⇒) : Assume that [V ]c[U ]KXψ /∈ hd(w). Thus, ¬[V ]c[U ]KXψ ∈ hd(w) because
set hd(w) is maximal. Hence, by Lemma 26, there is a world u ∈ W such that
w ∼U∪X u and ¬[V ]c[U ]ψ ∈ hd(u). Then, [V ]c[U ]ψ /∈ hd(u) because set hd(u) is
consistent. Thus, u,U � ψ by the induction hypothesis. Therefore, w,U � KXψ by
item 4 of Definition 2 and statement w ∼U∪X u.
(⇐) : Assume that [V ]c[U ]KXψ ∈ hd(w). Thus, by Lemma 27, for each epistemic
world u ∈ W , if w ∼U∪X u, then [V ]c[U ]ψ ∈ hd(u). Hence, by the induction
hypothesis, for each world u ∈ W , if w ∼U∪X u, then u,U � ψ . Therefore, w,U �
KXψ by item 4 of Definition 2.

Suppose that formula ϕ has the form [X ]ψ .
By item 5 of Definition 2, the statementw,U � [X ]ψ is equivalent to the statement

w,U ∪ X � ψ . In turn, w,U ∪ X � ψ iff [V ]c[U ∪ X ]ψ ∈ hd(w) by the induction
hypothesis. The statement [V ]c[U ∪ X ]ψ ∈ hd(w) is equivalent to the statement
[V ]c[U ][X ]ψ ∈ hd(w) by the Composition axiom, Corollary 1, and the maximality
of the set hd(w).

Finally, suppose formula ϕ has the form [X ]cψ .
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By item6ofDefinition 2, the statementw,U � [X ]cψ is equivalent to the statement
w,U \ X � ψ . The latter is equivalent to the statement [V ]c[U \ X ]ψ ∈ hd(w) by
the induction hypothesis. In turn, by Lemma 22 and the maximality of the set hd(w),
the last statement is equivalent to [V ]c[U ][X ]cψ ∈ hd(w). ��

We are now ready to state and prove the completeness theorem for our logical
system.

Theorem 4 If� ϕ, then there is a worldw of an epistemic model, and a datasetU ⊆ V
such that w,U � ϕ.

Proof Suppose that � ϕ. Thus, it follows by the Powerset axiom that there is a dataset
U ⊆ V such that� [V ]c[U ]ϕ. Thus, the single-element set {¬[V ]c[U ]ϕ} is consistent.
Then, by Lemma 18, there is a maximal consistent set of formulae F0 ⊆ � such that
{¬[V ]c[U ]ϕ} ⊆ F0. Consider the canonical model M(F0). Let worldw be the single-
element sequence F0. Then,

¬[V ]c[U ]ϕ ∈ {¬[V ]c[U ]ϕ} ⊆ F0 = hd(w).

Hence, [V ]c[U ]ϕ /∈ hd(w) because set hd(w) is consistent. Therefore, w,U � ϕ by
Lemma 30. ��

Because of [V ]c[U ] prefix in the proof above, this proof cannot be easily generalised
to a proof of the strong completeness. The strong completeness of our system remains
an open problem.

9 Model Checking

Recall that in the beginning of Section 2 we have assumed that the finite set V is
fixed throughout the article. In such a setting, by a model checking problem, we mean
deciding if w0,U0 � ϕ0 is true for the given world w0 of an epistemic model, dataset
U0 ⊆ V , and formula ϕ0 ∈ �.

There is a straightforward dynamic programming algorithm for solving this model
checking problem. The algorithm fills in an array sat[w,U , ϕ] for each worldw ∈ W ,
each dataset U ⊆ V , and each subformula ϕ of the original formula ϕ0. It ensures
that the value of sat[w,U , ϕ] is true iff w,U � ϕ. The size of the array sat is a
polynomial function of the input because the set V is fixed and, thus, has a constant
number of subsets U . Thus, the straightforward implementation of this algorithm has
a polynomial execution time.

One can also consider a more natural form of model checking problem where a
finite set V is given as a part of the input. In this case, there are exponentially many
subsets of V . As a result, a straightforward implementation of the above algorithm
has exponential execution time.

In the rest of this section, we present a polynomial-time model checking algorithm
for the more general model checking problem when V is given as a part of the input.
Informally, to address the issue of the exponential number of subsets of V , we compute
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the value of sat[w,U , ϕ] only for the pairs (U , ϕ) which are needed to evaluate the
value sat[w0,U0, ϕ0]. Formally, our version of the model checking algorithm first
invokes a helper function H that returns the list of all pairs (U1, ϕ1), …, (Un, ϕn)

required for the computation. Then, it creates a two-dimensional array sat[w, i], where
1 ≤ i ≤ n. Finally, the algorithm fills the array while ensuring that sat[w, i] has the
Boolean value true iff w,Ui � ϕi .

The recursive code for the function H(U , ϕ) is given in Fig. 8. In that code, the
expression [(U ′, ψ)] denotes a list whose only element is the pair (U ′, ψ). Note that
the execution time of this algorithm is a linear function of the size of the formula ϕ.

Figure 9 presents the code for the model checking algorithm that uses the helper
function H(U , ϕ). Observe that the execution time of this algorithm is polynomial in
terms of the size of the array sat[w, i]. The size of the array, as discussed earlier, is a
polynomial function of the input.

Another commonly asked algorithmic question about logical systems is the decid-
ability of the set of all its theorems.Usually, the decidability is shownby using filtration
to prove completeness with respect to the set of finite models. Unfortunately, we do
not know how to apply filtration to the tree construction in our proof of completeness.
As a result, the decidability of our logical system remains an open question.

10 Causality by Epistemic Events

In this section, we discuss how causality by epistemic events can be captured in our
logical system. Various formal approaches to capturing causality have been proposed
before [2, 7, 8, 10, 19, 20, 31, 33, 38]. Here, we focus on counterfactual definition of
causality: an event is a cause of ϕ if statement ϕ would not have been true without
the event. A variation of counterfactual causality in a formal setting has been studied
in [22].

Fig. 8 Helper function
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Fig. 9 Model checking algorithm. To improve the readability of the code, if (U , ϕ) is (Ui , ϕi ) for some
i ≤ n, then we write sat[w, (U , ϕ)] instead of sat[w, i]

In the case of causality by epistemic events, we can distinguish forward and back-
ward forms of causality that we denote by modalities Fxϕ and Bxϕ, respectively.
Modality Fxϕ means that “statement ϕ is true, and it would not have been true in the
same situation if data variable x had been publicly announced”. Modality Bxϕ means
that “statement ϕ is true, and it would not have been true in the same situation if data
variable x had not been publicly announced”. Both of these two modalities can be
expressed in our language:

Fxϕ ≡ ϕ ∧ [x]¬ϕ, (33)

Bxϕ ≡ ϕ ∧ [x]c¬ϕ. (34)
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In other words, backward causality Bx captures the effect of the revelation of the value
of x , while forward causality captures the effect of keeping the value of x concealed.

It is perhaps surprising that the opposite is also true. Our revelation and concealment
modalities can be expressed through Fx and Bx :

[x]ϕ ≡ (¬ϕ ∧ Fx¬ϕ) ∨ (ϕ ∧ ¬Fxϕ),

[x]cϕ ≡ (¬ϕ ∧ Bx¬ϕ) ∨ (ϕ ∧ ¬Bxϕ).

Going back to our introductory example, the epistemic event of the public revelation
of the content of the article is a backward cause of the fact that everyone who knew
the name of the financial advisor knew that he had a foreclosure. Formally, using
statements (3) and (4),

w1, {article} � BarticleKname(“the advisor had foreclosure”).

Of course, the subsequent concealment of the article by Google is a forward cause for
the lack of such knowledge:

w1, {article} � [article]cFarticle¬Kname(“the advisor had foreclosure”).

Modalities F and B can be generalised from single variables to datasets. To do this,
we need to add the minimality condition to formulae (33) and (34):

FXϕ ≡ ϕ ∧ [X ]¬ϕ ∧
∧

Y�X

[Y ]ϕ,

BXϕ ≡ ϕ ∧ [X ]c¬ϕ ∧
∧

Y�X

[Y ]cϕ.

11 Conclusion

Following several other recent works, in this article, we have advocated an approach to
reasoning about knowledge that treats datasets, not agents, as the source of knowledge.
Our main technical result is a sound and complete logical system that describes the
interplay between data-informed knowledge, public concealment, public revelation,
and functional dependency operators.We also prove the undefinability of the revelation
and the concealment modalities through each other. Finally, we describe and analyse
a model checking algorithm for this system.

Although variations of these modalities have been studied before, original to this
article is the description of the interplay between them captured in the Monotonicity,
Introspection of Dependency, Inversion, Commutativity, Epistemic Commutativity,
and Powerset axioms as well as in a non-trivial Concealed Monotonicity inference
rule. To show that our axiomatisation of this interplay is complete, we significantly
modified several known constructions. First, in Definition 5, we modified the dataset
closure operator ∗, whose origins could be traced to [4], by adding parameter F
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and including prefix [V ]c. Second, in Definition 6, we modified the previously used
tree construction [16] by including the prefix [V ]c in item 3. Third, in Definition 7,
we redefined tree labelling to use closure operator (·)∗Fn . Finally, we propose a non-
standard (for modal logic) version of the truth lemma (Lemma 30) that includes the
prefix [V ]c[U ] in front of formula ϕ.

A possible direction for future work is an extension of this system by other modal-
ities and relations dealing with datasets. One of them is the conditional functional
dependency relation X �ϕ Y which means that dataset X informs dataset Y condi-
tionally upon statement ϕ being true. It is inspired by Wang and Fan’s “conditionally
knowing value” expression defined as “agent a knows the value of data variable x
assuming condition ϕ is true”[36].
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