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Abstract
The article studies preferences of agents in a setting with imperfect information. For
such a setting, the authors propose a new class of preferences. It is said that an agent
prefers one statement over another if, among all indistinguishable worlds, the agent
prefers theworldswhere the first statement is true to thosewhere the second one is true.
The main technical result is a sound and complete logical system describing the inter-
play between a binary modality capturing preferences and the knowledge modality.
The proof of completeness is using a newly proposed “tumbled pairs” technique.

Keywords Preference · Knowledge · Completeness · Axiomatisation · Ceteris
paribus · Betterness

1 Introduction

In this article, we study the logical properties of the interplay between an agent’s
knowledge and preferences. As an example, consider an agent Alex who is headed
towards a store to buy fruits. For the sake of this example, suppose that it is known
that the store only sells three types of fruits: apples, bananas, and cantaloupes. Each
of the fruits is sold either at a regular price or a fixed sale price. Alex’s preferences
are captured in Table 1.

For example, he prefers apples on sale over bananas on sale, but bananas on sale
over apples at the regular price. Note that the regular price of his favourite fruit, the
cantaloupe, is so high that at the regular price the cantaloupe becomes his last choice.
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Table 1 Alex’s buying
preferences in descending order

Preference Fruit Price

1 Cantaloupe Sale

2 Apple Sale

3 Banana Sale

4 Apple Regular

5 Banana Regular

6 Cantaloupe Regular

Before entering the store, Alex does not know what fruits are on sale, so he does
not know yet which fruit he would prefer to buy. Suppose that, upon entering the store,
Alex notices that cantaloupes are being sold at the regular price. Upon learning this
information, he realises that he would rather buy apples, no matter if they are on sale
or not, than a cantaloupe, see Table 1. We write this as:

“Alex buys apples” � Alex “Alex buys a cantaloupe”. (1)

Similarly,

“Alex buys bananas” � Alex “Alex buys a cantaloupe”.

Note that, at this point, Alex still does not know the prices of apples and bananas. As a
result, he does not yet have preferences between buying these two fruits, see Table 1:

¬(“Alex buys apples” � Alex “Alex buys bananas”),

¬(“Alex buys bananas” � Alex “Alex buys apples”).

Next, let us suppose that Alex goes deeper into the store and discovers that apples
are on sale today. Based on this knowledge, he forms a preference to buy apples over
bananas no matter if bananas are on sale or not, see Table 1:

“Alex buys apples” � Alex “Alex buys bananas”.

The goal of this work is to formally define and study the properties of knowledge-
informed preferences expressed by modality �a .

Various logical systems for describing preferences have been proposed before.
Åqvist (1962) introduces a three-valued logical system for “deontically better” modal-
ity. Chisholm and Sosa (1966) intuitively define “intrinsically better” as a modality,
propose axioms for it and derive additional properties from these axioms. More
recently, Van Benthem et al. (2009) consider “betterness” modality [>]aϕ which
denotes the fact that statement ϕ holds in all worlds that agent a prefers over the
current world. Liu (2011, p.56) proposed a logical system combining modality [>]
with knowledge. Grossi et al. (2022) proposed several versions of “conditional best”
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modality. Jiang and Naumov (2022) gave an axiomatisation of an egocentric modality
“I prefer those agents who”.

The most related to us and probably the most influential among earlier logical
systems for preferences isHalldén’sLogic ofBetter (1957). It captures “better” relation
p � q between propositional variables in the perfect information setting. Halldén
assumes that p � q if each world in which p ∧ ¬q holds is at least as good as each
world in which ¬p ∧ q holds. A similar approach is also used later by Doyle et
al. (1991). We discuss this type of preferences and compare it with our approach in
Sect. 7.2.

There is a fundamental problem with Halldén’s definition of p � q as “each world
in which p ∧ ¬q holds is at least as good as each world in which ¬p ∧ q holds”.
Intuitively, sentence the “Alex prefers buying a cantaloupe over buying apples” does
notmean that Alex prefers a world in which he buys a cantaloupe and has an incurable
form of cancer to the world where he does not have cancer but has to settle on buying
apples. To address this problem, Von Wright (1963) introduces ceteris paribus (“all
other things being equal”) principle. Instead of comparing all worlds, this principle
requires comparing only the worlds where the other things are equal. For example,
Alex prefers buying a cantaloupe to buying apples if, among the worlds where he has
cancer, he prefers those where he buys a cantaloupe over those where he buys apples.
The same for the worlds where he does not have cancer.

Although the ceteris paribus principle constitutes an important paradigm shift that
significantly improves our understanding of preferences, it too has a problem. Namely,
this principle depends on what exactly is “other things” that are being equal. Von
Wright suggests that “other things” are all propositional variables in the language.
This clarification of “other things” makes ceteris paribus too weak in some situations
and too strong in others.

This clarificationmakes the principle tooweak if the language of themodel does not
have enough propositional variables to distinguishworlds that should not be compared.
To illustrate how this clarification makes the principle too strong, let us introduce
a propositional variable r (receipt) that stands for “Alex’s grocery receipt shows a
cantaloupe”. The ceteris paribus principle now forces us to compare the following two
situations (worlds):

1. Alex buys a cantaloupe and his receipt shows this,
2. Alex buys apples and tricks the register into charging him for a cantaloupe.

Simultaneously, we also need to compare the situations:

1. Alex buys a cantaloupe and tricks the register into not charging him for it,
2. Alex buys apples and, as expected, his receipt does not show a cantaloupe.

This example shows that requiring all other propositional variables to be equal is
perhaps too strong to capture what we intuitively mean by “Alex prefers buying a
cantaloupe over buying apples”.

An important next step in the formal treatment of ceteris paribus is done by Van
Benthem et al. (2009). The consider modality [Γ ]aϕ, where Γ is an arbitrary set of
formulae. This modality stands for “statement ϕ is true in all worlds that agent a
prefers over the current and in which all formulae in Γ have the same truth value as
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in the current world”. For example, imagine a world where Alex buys a cantaloupe at
a regular price. In this world,

[“cantaloupes are on sale”]Alex“Alex buys apples”. (2)

Indeed, the statement “cantaloupes are on sale” is false in the current world and among
all worlds where it is false, Alex prefers worlds where he buys apples to the current
world where he buys a cantaloupe. As observed in Van Benthem et al. (2009), if set
Γ is finite then, modality [Γ ]aϕ is expressible through discussed earlier “betterness”
modality [>]aϕ. For example, statement (2) is equivalent to

(“cantaloupes are on sale” →
[>]Alex(“cantaloupes are on sale” → “Alex buys apples”))

∧
(¬“cantaloupes are on sale” →

[>]Alex(¬“cantaloupes are on sale” → “Alex buys apples”)).

At the same time, if we allow Γ to be infinite, then the semantics of modality [Γ ]aϕ
is problematic. Indeed, let Φ be the set of all formulae in our language and p be a
propositional variable. Letϕ be formula [Γ ]a p. Note thatϕ ∈ Γ . Thus, the satisfaction
of formula ϕ is defined in terms of itself.

Recall that, in this work, we aim to study preferences informed by knowledge of
the agent. Thus, such preferences would be the same in all worlds indistinguishable by
the agents. In other words, such preferences could be described as scitis paribus (“all
known being equal”) preferences. Several possible modalities can be used to capture
such preferences.

First, one can use Benthem, Girard, and Roy’s modality [Γ ]a pwhereΓ is the set of
all true in the current world formulae of the form Kaψ . This approach is problematic
for at least two reasons. First, such set Γ would vary from world to world. Second, the
described above problem with infinite Γ manifests itself here as well: can Γ include
formula Ka[Γ ]a p?

Second, one can modify modality [>]a to mean “in all words better, to agent a,
than the current world and indistinguishable from the current world by agent a”. Note
that it is easy to imagine a situation with two indistinguishable by agent a worlds such
that the modified formula [>]a p is true in one of these worlds by not the other. Thus,
such a modality captures preferences that might not be known to the agent. It is an
interesting modality to study, but it is not the one that captures knowledge-informed
preferences.

Finally, one can modify the original Halldén’s relation p� q into modality ϕ �a ψ

that states that, among all worlds indistinguishable from the current world, agent a
prefers worlds in which ϕ is true over worlds in which ψ is true. This is the approach
adopted in the current paper. We propose a formal semantics of modality � and a
sound and complete logical system that describes the interplay between this modality
and the individual knowledge modality.
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Fig. 1 Fragments of three epistemicmodelswith preferences. Each diagramshowsonly 4 out of 24 epistemic
worlds. The three models capture the knowledge of Alex at different moments

The rest of the article is structured as follows. First, we introduce epistemic models
with preferences that are used inSect. 3 to give a formal semantics of our logical system.
We illustrate the formal semantics with additional examples in Sect. 4. Section5 lists
and discusses the axioms of our logical system. The soundness of these axioms is
shown in the Proof of Soundeness section of the appendix. Section6 contains our main
technical result, the proof of completeness. In Sect. 7, we present additional properties
of our systemand its connectionwith other logical approaches to preferences. Section8
concludes.

2 Epistemic model with preferences

In this section, we introduce epistemic models with preferences that are used later
to give the formal semantics of preference modality �. Throughout the article, we
assume a fixed nonempty set of propositional variables and a fixed set of agents A.

Definition 1 A tuple (W , {∼a}a∈A, {�a}a∈A, π) is an epistemic model with prefer-
ences, if

1. W is a set of “epistemic worlds”,
2. ∼a is an “indistinguishability” equivalence relation on setW for each agent a ∈ A,
3. �a is a “preference” strict partial order on set W for each agent a ∈ A,
4. π(p) is a subset of W for each propositional variable p.

For any sets U , V ⊆ W , we write U �a V if u �a v for all epistemic worlds u ∈ U
and v ∈ V . Note that item 3 above assumes that partial order �a is strict. We discuss
this assumption in detail in Sect. 7.4.

In our introductory example, we considered knowledge of agent Alex at three
distinct moments: before entering the store, after entering the store and discovering
that cantaloupes are being sold at the regular price, and after going deeper into the
store and learning that apples are on sale. As a result, to capture the introductory
example we consider three epistemic models with preferences. These three models
have the same set of possible worlds and the same preference relation, but different
indistinguishability relations. Informally, these models capture “the mental state” of
the agent at three distinct moments.

The epistemic worlds in all threemodels can be described as quadruplesw = abc f ,
where a, b, c ∈ {regular, sale} are the prices of apples, bananas, and cantaloupes,
respectively, inworldw and f ∈ {apple, banana, cantaloupe} is the fruit thatAlex buys
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in world w. Note that we use more succinct notation abc f for a tuple instead of more
standard (a, b, c, f ). There are 2×2×2×3 = 24 epistemicworlds in eachmodel. The
diagrams in Fig. 1 depict fragments of these three models. The nodes in the diagrams
are labelled with tuples abc f representing worlds. For example, nodes labelled with
“rssa” in all three diagrams represent theworld inwhich apples are sold at the regular (r)
price, bananas and cantaloupes are on sale (s), and the agent decides to buy apples (a).

Note that a single epistemic world in our example captures a sequence of events:
Alex enters the store, learns the price of the cantaloupes, proceeds deeper into the store,
learns the price of the apples, and finally buys a fruit. Thus, metaphorically speaking,
an epistemic world in our example is a “movie” rather than a static “snapshot”.

The dashed lines in the diagrams in Fig. 1 represent indistinguishability relations.
Since thefirst diagramdepicts the situation beforeAlex enters the store, in this diagram,
he cannot distinguish any of the worlds. The second diagram depicts the situation after
he learns the price of cantaloupes. As a result, he now can distinguish the worlds in
which the cantaloupe is on sale (like “rssa”) from those where it is at the regular price
(like “srrb”). The third diagram depicts the situation after he learns the price of apples.
At this stage, he still cannot distinguish the worlds that differ only by the price of
bananas, such as world “ssra” and “srra” (not shown). Also, note that he hasn’t bought
any fruits yet, so he cannot distinguish the worlds that differ only by the fruit that he
buys, such as world “srra” and world “srrb”.

The arrows in the diagrams in Fig. 1 show preference relations between worlds
based on the information given in Table 1. For example, according to the table, the
agent prefers buying apples at the regular price over buying bananas at the regular
price. This is reflected in the diagram by the arrow from world “srrb”, in which the
agent buys bananas at the regular price, to world “rssa”, in which the agent buys apples
at the regular price. Note that the agent has no preferences between worlds “rssa” and
“rsra” in those three diagrams. This is because in both worlds the agent buys apples
at the regular price. The fact that the cantaloupe is on sale in one of these worlds is
irrelevant because in both worlds he is buying apples, not a cantaloupe.

3 Syntax and semantics

In this section,we define the language of our formal system and the satisfaction relation
between the worlds of an epistemic model with preferences and the formulae in this
language.

The language Φ of our logical system is defined by the grammar:

ϕ := p | ¬ϕ | (ϕ → ϕ) | Kaϕ | (ϕ �a ϕ).

We follow the standard rules for the omission of the parentheses. We read formula
Kaϕ as “agent a knows ϕ” and formula ϕ �a ψ as “agent a prefers ϕ over ψ”. We
assume that conjunction ∧, disjunction ∨, and constant false ⊥ are defined in the
standard way.

Next, we give a formal semantics of our preference modality �. To understand the
intuition behind this formal semantics, let us go back to our introductory example and
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Fig. 2 Six worlds
indistinguishable from “ssrc”
after Alex learns that apples are
on sale and cantaloupes are not

ssra srra

ssrb

srrb

ssrc srrc

assume that the actual world is “ssrc”. That is, apples and bananas are on sale and
cantaloupes are not, but for whatever reason Alex ends up buying a cantaloupe. Recall
that each of the three epistemic models with preferences has 24 possible worlds. Let
us consider the model capturing the moment when Alex goes deeper into the store and
discovers that apples are on sale. This model is partially depicted in the third diagram
in Fig. 1.

In this model, there are only six worlds indistinguishable by Alex from the current
world “ssrc”. These worlds and the preference relations between them are depicted
in Fig. 2. At the moment we consider, Alex knows that the current world is one of
these six worlds, but he does not know which one. Note that, among these six worlds,
each world in which Alex buys apples is preferred to each world in which Alex buys
bananas. We interpret this as Alex’s preference at that moment of buying apples over
buying bananas:

ssrc � “Alex buys apples” � Alex “Alex buys bananas”.

This intuition is captured in item 5 of the definition below.

Definition 2 For any world w ∈ W of an epistemic model with preferences
(W , {∼a}a∈A, {�a}a∈A, π) and any formula ϕ ∈ Φ, the satisfaction relation w � ϕ

is defined recursively as follows:

1. w � p, if w ∈ π(p),
2. w � ¬ϕ, if w � ϕ,
3. w � ϕ → ψ , if w � ϕ or w � ψ ,
4. w � Kaϕ, if u � ϕ for each epistemic world u ∈ W such that w ∼a u,
5. w � ϕ �a ψ , when for all epistemic worlds u, u′ ∈ W , if w ∼a u, w ∼a u′,

u � ϕ, and u′ � ψ , then u �a u′.

Item 5 states that in world w an agent prefers statement ϕ over statement ψ if,
among all worlds indistinguishable from w, he prefers the worlds where ϕ is true
to those where ψ is true. Note that for ϕ �a ψ to hold, statements ϕ and ψ have
to be mutually exclusive among indistinguishable worlds. We discuss an alternative
approach in Sect. 7.2.
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Aswith any approach, ours applies better to some settings than others. For example,
in spite of our critique of the ceteris paribus principle in the introduction, it still has
limited applicability to our introductory example. Some people will argue that the
sentence “Alex prefers cantaloupe over apples” means that he prefers cantaloupe over
apples when they are either both on sale or both not on sale. Our semantics of modality� in item 5 of Definition 2 does not model such interpretation of preferences.

On the other hand, our approach is good at modelling adaptive preferences, which
are the preferences that change depending on the information available to the agent
(Bruckner, 2009). For example, under our definition, once Alex learns that he does not
get a gold medal, he starts preferring a silver one. Indeed, once Alex stops considering
a world where he gets a gold medal as epistemically possible, among possible worlds
he prefers those where he gets a silver medal to those where he does not. As a more
controversial example, note that once Alex learns that he has a terminal disease, he
prefers to die over staying alive. Indeed, in this situation he vacuously prefers each
world where he dies to each element of the empty set of the worlds in which he stays
alive.

It is easy to see that knowledge modality Ka is definable through preferences
modality �a as follows: Kaϕ ≡ (¬ϕ) �a ¬ϕ. Instead of proving this semantically
in the current section, we derive the same property from the axioms of our logical
system in Theorem 3 (Sect. 7.1). In spite of the definability of modality Ka through
modality �a , we have chosen to keep them both as primary modalities in language Φ

to improve the readability of the axioms.
To illustrate Definition 2, below we formally prove statement (1) about our intro-

ductory example.

Observation 1 For any x, y ∈ {r , s} and any f ∈ {a, b, c},

xyr f � “Alex buys apples” � Alex “Alex buys a cantaloupe”.

Proof Consider worlds x ′y′z′ f ′ and x ′′y′′z′′ f ′′ such that xyr f ∼Alex x ′y′z′ f ′
and xyr f ∼Alex x ′′y′′z′′ f ′′. Suppose that x ′y′z′ f ′ � “Alex buys apples” and
x ′′y′′z′′ f ′′ � “Alex buys a cantaloupe”. By item 5 of Definition 2, it suffices to show
that x ′y′z′ f ′ �Alex x ′′y′′z′′ f ′′.

Recall that we consider the moment when Alex already knows the price of the
cantaloupes. Thus, z′ = z′′ = r by the assumptions xyr f ∼ Alex x ′y′z′ f ′ and
xyr f ∼ Alex x ′′y′′z′′ f ′′. Also, f ′ = a and f ′′ = c by the assumptions x ′y′z′ f ′ �
“Alex buys apples” and x ′′y′′z′′ f ′′ � “Alex buys a cantaloupe”, respectively. Hence,
it suffices to show that x ′y′ra � Alex x ′′y′′rc. The last statement is true because Alex
prefers buying apples at any price x ′ over buying a cantaloupe at the regular price, see
Table 1. �

4 Additional examples

We further illustrate our formal definitions using the classical Prisoner’s Dilemma and
Battle of the Sexes games (Osborne and Rubinstein, 1994, p.15–16). The first of them
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Fig. 3 Three extensive form games: Prisoner’s Dilemma (left), Battle of the Sexes with imperfect informa-
tion (centre), and Battle of the Sexes with perfect information (right)

is depicted in the extensive form in the upper left diagram in Fig. 3. Here, Alex (A) first
chooses to cooperate (c) or to defect (d). Then, Brittany (B) also chooses to cooperate
or to defect.We assume that this is an extensive form gamewith imperfect information
in the sense that Brittany does not know Alex’s choice when she makes her own. We
capture this by the assumption that the two states labelled with B in the diagram are
indistinguishable by Brittany and visualise this by the dashed line connecting these
two states.

The lower-left diagram in Fig. 3 depicts “ex interim” epistemic model with prefer-
ences describing the Prisoner’sDilemmagame. Thismodel has four possible epistemic
worlds corresponding to four possible paths of play in the game. For example, the
world labelled with dc corresponds to the scenario in which Alex defects and Brittany
cooperates. The indistinguishability relations (shown using dashed lines) represent the
knowledge of the agents after Alex has made his choice and before Brittany has made
hers. Recall that she makes her choice not knowing Alex’s choice. Thus, for example,
Alex can distinguish world cc, in which he cooperates, from world dc, in which he
defects, but Brittany cannot.

The diagram in the upper-left corner also shows Alex’s and Brittany’s utility func-
tions (negative number of years spent in prison). For example, if Alex cooperates and
Brittany defects, then Alex spends four years in prison (utility −4) and Brittany is
released immediately (utility 0). We assume that Alex and Brittany are rational agents
– they prefer the worlds where their utility function is higher to those worlds where
it is lower. For example, Alex prefers world cc, where his utility is −1, to world cd,
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where his utility is −4. In the lower-left diagram, we show preference relations using
labelled arrows. For example, an arrow from world cd to world cc labelled with A
means that Alex prefers world cc to world cd.

Let us now consider world cc. Recall that we discuss the moment when Alex has
already made his decision to cooperate. Brittany does not know which decision he has
made and she has not yet decided on her own move. At that moment, Alex considers
only two worlds to be possible: cc and cd. He prefers the first over the second, see
Fig. 3 (lower left). Brittany cooperates in world cc and she defects in world cd. Thus,
by item 5 of Definition 2,

cc � “Brittany cooperates” �Alex “Brittany defects”. (3)

Since Brittany does not know Alex’s move and she has not yet decided on her own,
she considers all four worlds of this game cc, cd, dc, and dd to be possible. Note
that she prefers each of the worlds in the set {cd, dd} to each of the worlds in the
set {cc, dc}, see Fig. 3 (lower left). Brittany defects in each of the worlds from the
first set and cooperates in each of the worlds from the second set. Thus, by item 5 of
Definition 2,

cc � “Brittany defects” � Brittany “Brittany cooperates”. (4)

Our second example, the Battle of the Sexes game with imperfect information, is
depicted in the middle of Fig. 3. Consider world oo where, choosing between opera
(o) and football ( f ), Alex and Brittany both eventually decide to go to opera.We again
consider the moment when Alex has already made his choice, but Brittany does not
know it and she has not made her decision yet. At that moment, Alex considers only
worlds oo and of to be possible. He prefers the first over the second. Brittany goes
to opera in the first and to football in the second. Thus, by item 5 of Definition 2,
similarly to (3),

oo � “Brittany goes to opera” �Alex “Brittany goes to football”.

Note, however, that an equivalent of statement (4) does not hold in the Battle of the
Sexes game. Namely,

oo � “Brittany goes to opera” �Brittany “Brittany goes to football”.

This is because at that moment, Brittany allows the possibility of all four worlds and,
for example, she does not prefer world f o to world f f , see Fig. 3 (lower middle).

Finally, note that in the perfect information version of the same game, see Fig. 3
(right), Brittany knows Alex’s choice to go to opera. Thus, she only considers worlds
oo and of to be possible. She prefers the former over the latter. Thus,

oo � “Brittany goes to opera” �Brittany “Brittany goes to football”.
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In other words, the extra information available to Brittany in the perfect information
setting allows her to form the preference to go to opera rather than to football.

In conclusion, note that preferences and knowledge modalities can be combined
to express additional properties. For example, in the Prisoner’s Dilemma example, in
any world,

(KAlex(“Alex will not be released immediately”))

�Brittany(KAlex(“Brittany will not be released immediately”)). (5)

Indeed, the statement KAlex(“Alex will not be released immediately”) is satisfied in
worlds cc and cd. At the same time, it can also be observed that the statement
KAlex(“Brittany will not be released immediately”) is satisfied in worlds dc and dd.
Thus, statement (5) holds because Brittany prefers each of theworlds in the set {cc, cd}
to each of the worlds in the set {dc, dd}, see Fig. 3 (lower left).

5 Axioms

In this section, we list and discuss the axioms and the inference rules of our logical
system. In addition to propositional tautologies in language Φ, our logical system
contains the axioms below.

Truth Kaϕ → ϕ

Negative Introspection ¬Kaϕ → Ka¬Kaϕ

Distributivity Ka(ϕ → ψ) → (Kaϕ → Kaψ)

Introspection of Preference ϕ �a ψ → Ka(ϕ �a ψ)

Monotonicity Ka(ϕ → ψ) → (ψ �a χ → ϕ �a χ)

Ka(ϕ → ψ) → (χ �a ψ → χ �a ϕ)

Strictness ϕ �a ψ → ¬(ϕ ∧ ψ)

Superiority of Falsehood ⊥ �a ϕ

Inferiority of Falsehood ϕ �a ⊥
Transitivity ϕ �a ψ → (ψ → (ψ �a χ → ϕ �a χ))

Disjunction ϕ �a χ → (ψ �a χ → (ϕ ∨ ψ) �a χ)

ϕ �a ψ → (ϕ �a χ → ϕ �a (ψ ∨ χ))

TheTruth, theNegative Introspection, and theDistributivity are the standard axioms
of the epistemic logic S5. The Introspection of Preference axiom states that each agent
knows his preferences. Of course, in general, this is not true. However, this is true for
the class of “all other knownbeing equal” preferences defined by item5 ofDefinition 2.
The two forms of the Monotonicity axiom together say that each side of a preference
claim can be replaced by a knowingly-stronger statement.

The Strictness axiom states that if an agent prefers ϕ overψ , then one of these state-
ments must be false in the current world w. The axiom is true because the assumption
of the opposite implies that w ≺a w by item 5 of Definition 2. The latter contradicts
relation ≺a being a strict order. The Strictness axiom is also valid in a stronger form
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ϕ �a ψ → Ka¬(ϕ ∧ ψ), which is provable in our logical system. We further discuss
the strictness assumption in Sect. 7.4.

The Superiority of Falsehood axiom states that an agent prefers a world where
statement ⊥ is true to any world in the model. The Inferiority of Falsehood axiom
states that an agent prefers any world in the model to a world where statement ⊥ is
true. These axioms are vacuously true because statement ⊥ is false in all worlds.

TheTransitivity axiomcaptures the fact that preference relation on epistemicworlds
is transitive. The second assumption of this axiom, formula ψ , is significant. In the
form without this assumption: ϕ �a ψ → (ψ �a χ → ϕ �a χ) the axiom is not valid.
Indeed, in the caseψ ≡ ⊥, this hypothetical axiomhas the form:ϕ�a⊥ → (⊥�aχ →
ϕ �a χ). Note that ϕ �a ⊥ and ⊥ �a χ are instances of the Inferiority of Falsehood
and the Superiority of Falsehood axioms, respectively. Thus, the hypothetical axiom
implies that ϕ �a χ for arbitrary formulae ϕ and χ . The Transitivity axiom (with
the second assumption) is valid in a more general form ϕ �a ψ → (¬Ka¬ψ →
(ψ �a χ → ϕ �a χ)), which is provable in our logical system.

The first Disjunction axiom states that if an agent prefers the worlds where ϕ is
true to those where χ is true and he also prefers the worlds where ψ is true to those
where χ is true, then he prefers the worlds where ϕ ∨ χ is true to those where χ is
true. The second Disjunction axiom states a similar principle for the right-hand side
of the modality �.

We write � ϕ and say that formula ϕ ∈ Φ is a theorem of our logical system if
it is derivable from the above axioms using the Modus Ponens and the Necessitation
inference rules:

ϕ, ϕ → ψ

ψ

ϕ

Kaϕ
.

In addition to unary relation � ϕ, we also consider binary relation X � ϕ. We write
X � ϕ if formula ϕ is derivable from the set of formulae X and the theorems of our
logical system using only theModus Ponens inference rule. It is easy to see that∅ � ϕ

is equivalent to � ϕ. We call set X consistent if there is no formula ϕ ∈ Φ such that
X � ϕ and X � ¬ϕ.

The next strong soundness theorem is proven in the Proof of Soundness section of
the appendix.

Theorem 1 For any world w of an epistemic model with preferences, any set of for-
mulae X ⊆ Φ, and any formula ϕ ∈ Φ if w � χ for each formula χ ∈ X and X � ϕ,
then w � ϕ.

6 Completeness

In this section, we prove the completeness of our logical system. We start this proof
with Sect. 6.1, which states several auxiliary lemmas about derivability in our system.
Section6.2 defines the canonical epistemic model with preferences. In the section
that follows, we discuss and formally define the notion of a tumbled pair of sets of
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formulae. Finally, in Sect. 6.4, we use tumbled pairs and the canonical model to prove
the strong completeness.

6.1 Auxiliary lemmas

Lemma 1 1. � ϕ1 �a ψ1 → (ϕ2 �a ψ2 → (ϕ1 ∨ ϕ2) �a (ψ1 ∧ ψ2)),
2. � ϕ1 �a ψ1 → (ϕ2 �a ψ2 → (ϕ1 ∧ ϕ2) �a (ψ1 ∨ ψ2)).

Proof To prove the first of these statements, note that formulae ψ1 ∧ ψ2 → ψ1 and
ψ1 ∧ ψ2 → ψ2 are propositional tautologies. Thus, by the Necessitation inference
rule, � Ka(ψ1 ∧ ψ2 → ψ1) and � Ka(ψ1 ∧ ψ2 → ψ2). Hence, by the second
Monotonicity axiom and the Modus Ponens inference rule,

� ϕ1 � ψ1 → ϕ1 � (ψ1 ∧ ψ2),

� ϕ2 � ψ2 → ϕ2 � (ψ1 ∧ ψ2).

At the same time, the following formula is an instance of the first Disjunction axiom:

ϕ1 � (ψ1 ∧ ψ2) → (ϕ2 � (ψ1 ∧ ψ2) → (ϕ1 ∨ ϕ2) � (ψ1 ∧ ψ2)).

Therefore, by propositional reasoning,

� ϕ1 �a ψ1 → (ϕ2 �a ψ2 → (ϕ1 ∨ ϕ2) �a (ψ1 ∧ ψ2)).

The proof of the other statement is similar, using the first Monotonicity axiom and the
second Disjunction axiom. �

Lemma 2 (χ ∧ ¬ϕ) �a γ, ϕ �a ψ, χ �a (γ ∧ ¬ψ) � χ �a γ .

Proof By item 1 of Lemma 1,

� (χ ∧ ¬ϕ) �a γ → (ϕ �a ψ → ((χ ∧ ¬ϕ) ∨ ϕ) �a (γ ∧ ψ)).

At the same time, by item 2 of Lemma 1,

� ((χ ∧ ¬ϕ) ∨ ϕ) �a (γ ∧ ψ) → (χ �a (γ ∧ ¬ψ)

→ (((χ ∧ ¬ϕ) ∨ ϕ) ∧ χ) �a ((γ ∧ ψ) ∨ (γ ∧ ¬ψ))).

Thus, from the two previous statements by the Modus Ponens inference rule applied
four times,

(χ ∧ ¬ϕ) �a γ, ϕ �a ψ, χ �a (γ ∧ ¬ψ)

� (((χ ∧ ¬ϕ) ∨ ϕ) ∧ χ) �a ((γ ∧ ψ) ∨ (γ ∧ ¬ψ)).
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Note that formula χ → ((χ ∧ ¬ϕ) ∨ ϕ) ∧ χ is a propositional tautology. Hence,
� Ka(χ → ((χ ∧ ¬ϕ) ∨ ϕ) ∧ χ) by the Necessitation inference rule. Then, by the
first Monotonicity axiom and the Modus Ponens inference rule,

(χ ∧ ¬ϕ) �a γ, ϕ �a ψ, χ �a (γ ∧ ¬ψ) � χ �a ((γ ∧ ψ) ∨ (γ ∧ ¬ψ)).

Next, observe that formula γ → (γ ∧ψ)∨(γ ∧¬ψ) is also a propositional tautology.
Thus,� Ka(γ → (γ ∧ψ)∨(γ ∧¬ψ)) by theNecessitation inference rule. Therefore,

(χ ∧ ¬ϕ) �a γ, ϕ �a ψ, χ �a (γ ∧ ¬ψ) � χ �a γ

by the second Monotonicity axiom and the Modus Ponens inference rule. �
Lemma 3 (Lindenbaum) Any consistent set of formulae can be extended to a maximal
consistent set of formulae.

Proof The standard proof of Lindenbaum’s lemma (Mendelson, 2009, Proposi-
tion 2.14) applies here, too. �

We omit the proofs of the next three well-known lemmas.

Lemma 4 (positive introspection) � Kaϕ → KaKaϕ.

Lemma 5 (deduction) If X , ϕ � ψ , then X � ϕ → ψ .

Lemma 6 If ϕ1,. . . ,ϕn � ψ , then Kaϕ1,. . . ,Kaϕn � Kaψ .

6.2 Canonical model

In this section, we proceed to define the canonical epistemic model with preferences
(W , {∼a}a∈A, {�a}a∈A, π). Like in most proofs of completeness for modal logics,
the epistemic worlds of the canonical model are maximal consistent sets of formulae.

Definition 3 W is the set of all maximal consistent sets of formulae.

Definition 4 For all worlds w, u ∈ W , let w ∼a u when for each formula ϕ, if
Kaϕ ∈ w, then ϕ ∈ u.

One can also define that w ∼a u is true if maximal consistent sets of formulae w

and u have the same Ka-formulae. Although our definition results in shorter proofs
of several lemmas, it is a bit cumbersome to show that the relation ∼a , as it is defined
above, is an equivalence relation.Wegive the proof of the lemmabelow in theAuxiliary
Lemma section of the appendix.

Lemma 7 Relation ∼a is an equivalence relation on set W for each a ∈ A.

The next definition is a straightforward reflection of item 5 of Definition 2.

Definition 5 w �a u if w ∼a u and there is a formula ϕ �a ψ ∈ w such that ϕ ∈ w

and ψ ∈ u.
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Next, we show that relation �a is a strict partial order. Note that the fact that it is
transitive is non-trivial and, at least to us, unexpected. Indeed, the assumptionsw �a u
and u �a v imply that there are formula ϕ1 �a ψ1 ∈ w and formula ϕ2 �a ψ2 ∈ u
such that ϕ1 ∈ w, ψ1 ∈ u, ϕ2 ∈ u, and ψ2 ∈ v. It is not obvious how this would imply
that w �a v.

Lemma 8 Relation �a is a strict partial order on set W .

Proof Irreflexivity. Suppose that w �a w for some epistemic world w ∈ W . Thus,
by Definition 5, there exists a formula ϕ �a ψ ∈ w such that ϕ,ψ ∈ w. The statement
ϕ �a ψ ∈ w implies w � ¬(ϕ ∧ ψ) by the Strictness axiom and the Modus Ponens
inference rule. At the same time, the statement ϕ,ψ ∈ w implies w � ϕ ∧ ψ by the
laws of propositional reasoning. Therefore, set w is not consistent, which contradicts
Definition 3.

Transitivity. Suppose that w �a u and u �a v. Thus, by Definition 5,

w ∼a u and u ∼a v (6)

and there are formulae

ϕ1 �a ψ1 ∈ w and ϕ2 �a ψ2 ∈ u (7)

such that

ϕ1 ∈ w,ψ1 ∈ u and ϕ2 ∈ u, ψ2 ∈ v. (8)

Note that ψ1 ∧ ϕ2 → ψ1 and ψ1 ∧ ϕ2 → ϕ2 are propositional tautologies. Thus,
� Ka(ψ1 ∧ ϕ2 → ψ1) and � Ka(ψ1 ∧ ϕ2 → ϕ2) by the Necessitation inference
rule. Hence, by the Monotonicity axiom and the Modus Ponens inference rule using
statement (7),

w � ϕ1 �a (ψ1 ∧ ϕ2) and u � (ψ1 ∧ ϕ2) �a ψ2. (9)

The first conjunct in the above formula implies w � Ka(ϕ1 �a (ψ1 ∧ ϕ2)) by
the Introspection of Preference axiom and the Modus Ponens inference rule. Thus,
Ka(ϕ1 �a (ψ1 ∧ ϕ2)) ∈ w because set w is maximal. Hence, ϕ1 �a (ψ1 ∧ ϕ2) ∈ u
by Definition 4 and the part w ∼a u of statement (6). Then, by the Transitivity axiom
and the Modus Ponens inference rule,

u � ψ1 ∧ ϕ2 → ((ψ1 ∧ ϕ2) �a ψ2 → ϕ1 �a ψ2).

Thus, by propositional reasoning using the parts ψ1 ∈ u and ϕ2 ∈ u of statement (8),

u � (ψ1 ∧ ϕ2) �a ψ2 → ϕ1 �a ψ2.

Hence, u � ϕ1 �a ψ2 by the Modus Ponens inference rule and the second conjunct
from statement (9). Then, ϕ1 �a ψ2 ∈ u because set u is maximal. At the same time,
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w ∼a v by Lemma 7 and statement (6). Also, ϕ1 ∈ w and ψ2 ∈ v by statement (8).
Therefore, w �a v by Definition 5. �
Definition 6 π(p) = {w ∈ W | p ∈ w} for each propositional variable p.

This concludes the definition of the canonical epistemic model with preferences
(W , {∼a}a∈A, {�a}a∈A, π).

6.3 Tumbled pairs

As usual, at the core of the proof of completeness is an “induction” or a “truth” lemma.
In our case, this is Lemma 17. The proof of the induction lemma in modal logic is
often preceded by one or more lemmas that show that if a maximal consistent set of
formulae w does not contain a modal formula �ϕ, then there is a maximal consistent
set u, somehow related to set w, such that ϕ /∈ u. In our case, for modality Ka , this is
Lemma 14. The situation is more complicated in the case of modality �a . Indeed, the
corresponding lemma for modality �a , Lemma 15, claims the existence of not one
but two interdependent maximal consistent sets because item 5 of Definition 2 refers
to two worlds, u and u′. To prove Lemma 15, one needs to construct simultaneously
these two sets. Towards this goal, we have developed a “tumbled pairs” technique that
we describe in this section. We use this technique in the proof of Lemma 15.

We say that two (not necessarily maximal consistent) sets of formulae form a
“tumbled pair” if they satisfy a certain constraint specified in Definition 7 below.
Technically, we talk about a (w, a)-tumbled pair because the constraint depends
on parameters w and a. In Lemma 11, we show that a specific pair is tumbled. In
Lemma 12, we show that any tumbled pair can be extended in a certain way while
still remaining tumbled. If such an extension is performed ad infinitum, then we say
that the tumbled pair is saturated, see Definition 8. In Lemma 13, we observe that
any tumbled pair can be extended to a saturated tumbled pair. In the next section, to
prove Lemma 15, we start with the tumbled pair from Lemma 11, extend it to a satu-
rated tumbled pair by Lemma 13, and, finally, further extend it to a pair of maximal
consistent sets of formulae u and u′ using the Lindenbaum’s lemma.

Definition 7 Let w be a maximal consistent set of formulae, a ∈ A be an agent,
and X ,Y be two (possibly infinite) sets of formulae. Pair (X ,Y ) is (w, a)-tumbled if
(∧X ′) �a (∧Y ′) /∈ w for any finite sets X ′ ⊆ X and Y ′ ⊆ Y .

Lemma 9 If pair (X ,Y ) is (w, a)-tumbled, then set X is consistent.

Proof If set X is inconsistent, then there must exist a finite set X ′ ⊆ X such that
X ′ � ⊥. Hence, � ∧X ′ → ⊥ by Lemma 5 and propositional reasoning. Thus,
� Ka(∧X ′ → ⊥) by the Necessitation inference rule. Let set Y ′ be an arbitrary finite
subset of Y . Then, by the first Monotonicity axiom and the Modus Ponens inference
rule,

� (⊥ �a ∧Y ′) → (∧X ′ �a ∧Y ′).
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Note that formula ⊥ �a ∧Y ′ is an instance of the Superiority of Falsehood axiom.
Hence, by the Modus Ponens inference rule,

� ∧X ′ �a ∧Y ′.

Then, ∧X ′ �a ∧Y ′ ∈ w because set w is maximal. Therefore, pair (X ,Y ) is not
(w, a)-tumbled by Definition 7. �
Lemma 10 If pair (X ,Y ) is (w, a)-tumbled, then set Y is consistent.

Proof If setY is inconsistent, then theremust exist a finite setY ′ ⊆ Y such thatY ′ � ⊥.
Hence,� ∧Y ′ → ⊥byLemma5andpropositional reasoning.Thus,� Ka(∧Y ′ → ⊥)

by the Necessitation inference rule. Let set X ′ be an arbitrary finite subset of X . Thus,
by the second Monotonicity axiom and the Modus Ponens inference rule,

� (∧X ′ �a ⊥) → (∧X ′ �a ∧Y ′).

Note that formula ∧X ′ �a ⊥ is an instance of the Inferiority of Falsehood axiom.
Hence, by the Modus Ponens inference rule,

� ∧X ′ �a ∧Y ′.

Then, ∧X ′ �a ∧Y ′ ∈ w because set w is maximal. Therefore, pair (X ,Y ) is not
(w, a)-tumbled by Definition 7. �
Lemma 11 For anymaximal consistent set of formulaew andany formulaϕ�aψ /∈ w,
pair (X ,Y ) is (w, a)-tumbled, where

X = {ϕ} ∪ {χ | Kaχ ∈ w},
Y = {ψ} ∪ {γ | Kaγ ∈ w}.

Proof Suppose the opposite. Thus, by Definition 7, there are finite sets X ′ and Y ′ such
that

X ′ ⊆ {ϕ} ∪ {χ | Kaχ ∈ w}, (10)

Y ′ ⊆ {ψ} ∪ {γ | Kaγ ∈ w}, (11)

∧X ′ �a ∧Y ′ ∈ w. (12)

Assume that χ1, . . . , χm is the list of all the formulae in the finite set X ′ ∩ {χ | Kaχ ∈
w} and γ1, . . . , γn is the list of all the formulae in the finite set Y ′ ∩ {γ | Kaγ ∈ w}.
Then, by statements (10) and (11),

χ1, . . . , χm, ϕ � ∧X ′,
γ1, . . . , γn, ψ � ∧Y ′.
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Hence, by Lemma 5,

χ1, . . . , χm � ϕ → ∧X ′,
γ1, . . . , γn � ψ → ∧Y ′.

Thus, by Lemma 6,

Kaχ1, . . . , Kaχm � Ka(ϕ → ∧X ′),
Kaγ1, . . . , Kaγn � Ka(ψ → ∧Y ′).

Recall that Kaχ1, . . . , Kaχm, Kaγ1, . . . , Kaγn ∈ w by the choice of formulae
χ1, . . . , χm, γ1, . . . , γn . Then,

w � Ka(ϕ → ∧X ′),
w � Ka(ψ → ∧Y ′).

Hence, by the first and the second Monotonicity axioms and the Modus Ponens infer-
ence rule,

w � (∧X ′ �a ∧Y ′) → (ϕ �a ∧Y ′),
w � (ϕ �a ∧Y ′) → (ϕ �a ψ).

Thus, by the laws of propositional reasoning,

w � (∧X ′ �a ∧Y ′) → (ϕ �a ψ).

Then,w � ϕ�a ψ by theModus Ponens inference rule and statement (12). Therefore,
ϕ �a ψ ∈ w because setw is maximal, which contradicts the assumption ϕ �a ψ /∈ w

of the lemma. �
Lemma 12 For any (w, a)-tumbled pair (X ,Y ) and any formula ϕ �a ψ ∈ w, either
pair (X ∪ {¬ϕ},Y ) or pair (X ,Y ∪ {¬ψ}) is (w, a)-tumbled.

Proof Suppose pairs (X ∪{¬ϕ},Y ) and (X ,Y ∪{¬ψ}) are not (w, a)-tumbled. Thus,
by Definition 7, there exist finite sets X1 ⊆ X ∪ {¬ϕ} and Y1 ⊆ Y such that

∧ X1 �a ∧Y1 ∈ w (13)

and finite sets X2 ⊆ X and Y2 ⊆ Y ∪ {¬ψ} such that

∧ X2 �a ∧Y2 ∈ w. (14)

The statements X1 ⊆ X ∪ {¬ϕ} and X2 ⊆ X imply that there is a finite set X0 ⊆ X
such that

X0,¬ϕ � ∧X1, (15)
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X0 � ∧X2. (16)

Similarly, the statements Y1 ⊆ Y and Y2 ⊆ Y ∪ {¬ψ} imply that there is a finite set
Y0 ⊆ Y such that

Y0 � ∧Y1, (17)

Y0,¬ψ � ∧Y2. (18)

From statements (15), (16), (17), and (18) usingLemma5 and propositional reasoning,

� (∧X0) ∧ ¬ϕ → ∧X1,

� ∧X0 → ∧X2,

� ∧Y0 → ∧Y1,
� (∧Y0) ∧ ¬ψ → ∧Y2.

Hence, by the Necessitation inference rule,

� Ka((∧X0) ∧ ¬ϕ → ∧X1),

� Ka(∧X0 → ∧X2),

� Ka(∧Y0 → ∧Y1),
� Ka((∧Y0) ∧ ¬ψ → ∧Y2).

Then, by the Monotonicity axioms and the Modus Ponens inference rule,

� (∧X1 �a ∧Y1) → (((∧X0) ∧ ¬ϕ) �a ∧Y1),
� (((∧X0) ∧ ¬ϕ) �a ∧Y1) → (((∧X0) ∧ ¬ϕ) �a ∧Y0),
� (∧X2 �a ∧Y2) → (∧X0 �a ∧Y2),
� (∧X0 �a ∧Y2) → (∧X0 �a ((∧Y0) ∧ ¬ψ)).

Thus, by the laws of propositional reasoning,

� (∧X1 �a ∧Y1) → (((∧X0) ∧ ¬ϕ) �a ∧Y0),
� (∧X2 �a ∧Y2) → (∧X0 �a ((∧Y0) ∧ ¬ψ)).

Hence, by the Modus Ponens inference rule using assumptions (13) and (14),

w � ((∧X0) ∧ ¬ϕ) �a (∧Y0),
w � (∧X0) �a ((∧Y0) ∧ ¬ψ).

Then, by Lemma 2 using the assumption ϕ �a ψ ∈ w of the lemma,

w � ∧X0 �a ∧Y0.
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Thus, ∧X0 �a ∧Y0 ∈ w because set w is maximal. Therefore, by Definition 7, pair
(X ,Y ) is not (w, a)-tumbled. �
Definition 8 A (w, a)-tumbled pair (X ,Y ) is (w, a)-saturated if for each formula
ϕ �a ψ ∈ w, either ¬ϕ ∈ X or ¬ψ ∈ Y .

The next lemma follows from Lemma 12 and Definition 8.

Lemma 13 For any (w, a)-tumbled pair (X ,Y ), there is a (w, a)-saturated (w, a)-
tumbled pair (X ′,Y ′) such that X ⊆ X ′ and Y ⊆ Y ′.

6.4 Final steps

Here, we conclude the proof of the strong completeness, which is stated as Theorem 2
at the end of this section. The next three lemmas are auxiliary results used in the
induction step of the proof of “induction” or “truth” Lemma 17. The most non-trivial
of them is Lemma 15, whose proof is using the tumbled-pair construction.

Lemma 14 For any epistemic world w ∈ W and any formula Kaϕ /∈ w, there exists
an epistemic world u ∈ W such that w ∼a u and ϕ /∈ u.

Proof First, we show that the set of formulae X = {¬ϕ} ∪ {ψ | Kaψ ∈ w} is
consistent. Assume the opposite, then there are formulae Kaψ1, . . . , Kaψn ∈ w such
thatψ1, . . . , ψn � ϕ. Hence, Kaψ1, . . . , Kaψn � Kaϕ by Lemma 6. Thus,w � Kaϕ

by the assumption Kaψ1, . . . , Kaψn ∈ w. Then, Kaϕ ∈ w because setw is maximal,
which contradicts the assumption of the lemma. Therefore, set X is consistent.

By Lemma 3, there is a maximal consistent extension u of the set X . Note that
w ∼a u by Definition 4 and the choice of sets X and u. Finally, ¬ϕ ∈ X ⊆ u also by
the choice of sets X and u. Therefore, ϕ /∈ u because set u is consistent. �
Lemma 15 For any epistemic world w ∈ W and any formula ϕ �a ψ /∈ w, there exist
epistemic worlds u, u′ ∈ W such that w ∼a u, w ∼a u′, ϕ ∈ u, ψ ∈ u′, and u �a u′.

Proof Consider the following two sets of formulae

X = {ϕ} ∪ {χ | Kaχ ∈ w},
X ′ = {ψ} ∪ {χ | Kaχ ∈ w}.

By Lemma 11 and the assumption ϕ �a ψ /∈ w, pair (X , X ′) is (w, a)-tumbled. By
Lemma 13, there is a (w, a)-saturated (w, a)-tumbled pair (Y ,Y ′) such that X ⊆ Y
and X ′ ⊆ Y ′. Sets Y and Y ′ are consistent by Lemma 9 and Lemma 10, respectively.
Let sets u and u′ be any maximal consistent extensions of sets Y and Y ′, respectively.
Such sets exist by Lemma 3.

Note that by Definition 4 and the choice of sets X , Y , and u,

w ∼a u. (19)
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Similarly, w ∼a u′ by the choice of sets X ′, Y ′, and u′. Also, ϕ ∈ X ⊆ Y ⊆ u and
ψ ∈ X ′ ⊆ Y ′ ⊆ u′ by the choice of sets X , Y , u, X ′, Y ′, and u′.

To prove that u �a u′, suppose the opposite. Thus, by Definition 5, there is a
formula σ �a τ ∈ u such that

σ ∈ u and τ ∈ u′. (20)

The statement σ �a τ ∈ u implies that u � Ka(σ �a τ) by the Introspection of
Preference axiom and the Modus Ponens inference rule. Thus, Ka(σ �a τ) ∈ u
because set u is maximal. Note, u ∼a w by Lemma 7 and statement (19). Hence,
σ �a τ ∈ w by Definition 4. Recall that pair (Y ,Y ′) is (w, a)-saturated by the choice
of sets Y and Y ′. Then, by Definition 8, either ¬σ ∈ Y or ¬τ ∈ Y ′. Thus, either
¬σ ∈ u or ¬τ ∈ u′ because Y ⊆ u and Y ′ ⊆ u′. Therefore, because sets u and u′ are
consistent, either σ /∈ u or τ /∈ u′, which contradicts statement (20). �
Lemma 16 For any worlds w, u, u′ ∈ W and any formula ϕ �a ψ ∈ w, if w ∼a u,
w ∼a u′, ϕ ∈ u, ψ ∈ u′, then u �a u′.

Proof The assumption ϕ �a ψ ∈ w implies w � Ka(ϕ �a ψ) by the Introspection
of Preference axiom and the Modus Ponens inference rule. Thus, Ka(ϕ �a ψ) ∈ w

because set w is maximal. Hence,

ϕ �a ψ ∈ u (21)

by Definition 4 and the assumption w ∼a u of the lemma. At the same time, the
assumptions w ∼a u and w ∼a u′ imply that u ∼a u′ by Lemma 7. Therefore,
u �a u′ by Definition 5, statement (21), and the assumptions ϕ ∈ u and ψ ∈ u′ of the
lemma. �
Lemma 17 w � ϕ iff ϕ ∈ w for any world w ∈ W and any formula ϕ ∈ Φ.

Proof We prove the lemma by structural induction on formula ϕ. If ϕ is a proposi-
tional variable, then the statement of the lemma follows from item 1 of Definition 2
and Definition 6. If formula ϕ is a negation or an implication, then the statement of
the lemma follows from items 2 and 3 of Definition 2 and the maximality and the
consistency of set w in the standard way.

Suppose that formula ϕ has the form Kaψ .
(⇒) : Assume that Kaψ /∈ w. Thus, by Lemma 14, there exists an epistemic world
u ∈ W such that w ∼a u and ψ /∈ u. Hence, u � ψ by the induction hypothesis.
Therefore, w � Kaψ by item 4 of Definition 2.
(⇐) : Let Kaψ ∈ w. Consider any epistemic world u ∈ W such thatw ∼a u. By item
4 ofDefinition 2, it suffices to show that u � ψ . Indeed, the assumptions Kaψ ∈ w and
w ∼a u imply ψ ∈ u by Definition 4. Therefore, u � ψ by the induction hypothesis.

Finally, suppose that formula ϕ has the form ψ �a χ .
(⇒) : Assume that ψ �a χ /∈ w. Thus, by Lemma 15, there are epistemic worlds
u, u′ ∈ W such that w ∼a u, w ∼a u′, ψ ∈ u, χ ∈ u′, and u �a u′. Then, u � ψ and
u′ � χ by the induction hypothesis. Therefore,w � ψ �a χ by item 5 of Definition 2.
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(⇐) : Let ψ �a χ ∈ w. Consider any epistemic worlds u, u′ ∈ W such that w ∼a u,
w ∼a u′, u � ψ , and u′ � χ . By item 5 of Definition 2, it suffices to show that
u �a u′. Indeed, the assumptions u � ψ , and u′ � χ imply ψ ∈ u and χ ∈ u′
by the induction hypothesis. Therefore, u �a u′ by Lemma 16 and the assumptions
ψ �a χ ∈ w, w ∼a u, and w ∼a u′. �

Weare now ready to state and prove the strong completeness theorem for our logical
system.

Theorem 2 For any set of formulae X ⊆ Φ and any formula ϕ ∈ Φ, if X � ϕ, then
there is a world w of an epistemic model with preferences such that w � χ for each
formula χ ∈ X and w � ϕ.

Proof The assumption X � ϕ implies that the set X ∪ {¬ϕ} is consistent. Thus, by
Lemma 3, it can be extended to a maximal consistent set w. By Definition 3, set w is
a world of the canonical epistemic model with preferences. Note that ϕ /∈ w because
set w is consistent and ¬ϕ ∈ X ⊆ w. Therefore, w � χ for each formula χ ∈ X by
Lemma 17. Also, w � ϕ by the same Lemma 17. �

7 Discussion of the logical system

In the rest of the article, we discuss various properties of the proposed logical system
and further compare our approach with the one existing in the literature.

7.1 Definability of knowledge through preferences

In this section,we prove that knowledgemodality Ka is expressible through preference
modality �a .

Theorem 3 � Kaϕ ↔ ((¬ϕ) �a ¬ϕ).

Proof We prove the two parts of the biconditional separately.
(⇒) : Note that formula ϕ → (¬ϕ → ⊥) is a propositional tautology. Hence, �
Ka(ϕ → (¬ϕ → ⊥)) by the Necessitation inference rule. Thus, by the Distributivity
axiom and the Modus Ponens inference rule,

� Kaϕ → Ka(¬ϕ → ⊥). (22)

At the same time, the following formula is an instance of the firstMonotonicity axiom:

� Ka(¬ϕ → ⊥) → ((⊥ �a ¬ϕ) → ((¬ϕ) �a ¬ϕ)).

Hence, by the laws of propositional reasoning using statement (22),

� Kaϕ → ((⊥ �a ¬ϕ) → ((¬ϕ) �a ¬ϕ)).
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Then, again by the laws of propositional reasoning,

� (⊥ �a ¬ϕ) → (Kaϕ → ((¬ϕ) �a ¬ϕ)).

Therefore, � Kaϕ → ((¬ϕ) �a ¬ϕ) by the Superiority of Falsehood axiom and the
Modus Ponens inference rule.
(⇐) : Observe that formula ((¬ϕ) �a ¬ϕ) → ¬(¬ϕ ∧ ¬ϕ) is an instance of the
Strictness axiom. Thus, � ((¬ϕ) �a ¬ϕ) → ϕ by the law of propositional reasoning.
Hence, � Ka((¬ϕ �a ¬ϕ) → ϕ) by the Necessitation inference rule. Then, by the
Distributivity axiom and the Modus Ponens inference rule,

� Ka((¬ϕ) �a ¬ϕ) → Kaϕ. (23)

At the same time, the following formula is an instanceof the IntrospectionofPreference
axiom:

((¬ϕ) �a ¬ϕ) → Ka((¬ϕ) �a ¬ϕ).

Therefore, � ((¬ϕ) �a ¬ϕ) → Kaϕ by the laws of propositional reasoning using
statement (23). �

7.2 Preferences over non-exclusive statements

In this and the next sections, we compare our definition of preferences to the alterna-
tives existing in the literature.

According to item 5 of Definition 2, an agent a has preferences for ϕ over ψ if,
among all worlds indistinguishable from the current one, the agent prefers the worlds
where ϕ is true to those where ψ is true. This means that statements ϕ and ψ must be
exclusive. Indeed, if there is an indistinguishable world in which both statements are
true, then the agent would prefer this world to itself. The letter is not possible because
in Definition 1 we assume that the preference relation is strict.

To consider preferences between non-exclusive statements, one can alternatively
require the agent to prefer the worlds where ϕ ∧ ¬ψ is true to those where ψ ∧ ¬ϕ is
true. We denote this alternative preference modality by ϕ �a ψ . If the language Φ of
our logical system is extended by the additional binarymodality�a , then the definition
of the satisfaction relation � from Definition 2 should be extended as follows:

Definition 9 w � ϕ �a ψ , when for all epistemic worlds u, u′ ∈ W , if w ∼a u,
w ∼a u′, u � ϕ ∧ ¬ψ , and u′ � ψ ∧ ¬ϕ, then u �a u′.

As discussed in the introduction, in the perfect information setting, such a definition
of preferences has originally been proposed by Halldén (1957) under name “better”.
Doyle et al. (1991) call this notion “relative desire”. Neither of them restrict worlds
u and u′ to those that are indistinguishable from the current world w because they
consider settings with perfect information.
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In this section, we illustrate the difference between our preference modality � and
preference modality �. We also compare expressive powers of these two modalities.

The next two observations illustrate the difference between the two preference
modalities using the Battle of the Sexes with imperfect information example depicted
in Fig. 3 (centre). To fit formulae in one line, in statements and proofs of both of these
observations, by “one of them” we mean “at least one of them”.

Observation 2 For any epistemic world w ∈ {oo, of , f o, f f },

w � “One of them goes to opera” � Brittany “One of them goes to football”.

Proof Consider any worlds v, v′ such that w ∼ Brittany v, w ∼ Brittany v′,

v � “One of them goes to opera” ∧ ¬“One of them goes to football”, (24)

v′ � “One of them goes to football” ∧ ¬“One of them goes to opera”. (25)

By Definition 9, it suffices to show that v � Brittany v′. Indeed, statement (24) and
statement (25) imply that v = oo and v′ = f f , respectively. Therefore, v � Brittany v′,
see Fig. 3 (lower middle). �
Observation 3 For any epistemic world w ∈ {oo, of , f o, f f },

w � “One of them goes to opera” � Brittany “One of them goes to football”.

Proof Note that w ∼ Brittany of and w ∼ Brittany f f because all worlds in our model
are indistinguishable by Brittany, see Fig. 3 (lower middle). Also,

of � “One of them goes to opera”,

f f � “One of them goes to football”

Finally, of � Brittany f f , see Fig. 3 (lower middle). Therefore,

w � “One of them goes to opera” � Brittany “One of them goes to football”

by item 5 of Definition 2. �
Although one might argue whether modality � or modality � captures the notion

of preference better, this question is not as important as it might seem. Indeed, as the
next two theorems show, each of these modalities is expressible through the other one.

Theorem 4 w � ϕ �a ψ iff w � (ϕ ∧ ¬ψ) �a (ψ ∧ ¬ϕ) for each epistemic world w

of each epistemic model with preferences.

Theorem 5 w � ϕ �a ψ iff w � Ka(¬ϕ ∨¬ψ)∧ (ϕ �a ψ) for each epistemic world
w of each epistemic model with preferences.
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Proof (⇒) : Consider any world w of an arbitrary epistemic model with preferences
(W , {∼a}a∈A, {�a}a∈A, π). Suppose that w � ϕ �a ψ . It suffices to show that w �
Ka(¬ϕ ∨ ¬ψ) and w � ϕ �a ψ .

To prove that w � Ka(¬ϕ ∨ ¬ψ), consider any epistemic world u ∈ W such that
w ∼a u. By item 4 of Definition 2, it is enough to show that u � ¬ϕ ∨ ¬ψ . Indeed,
suppose the opposite. Then, u � ϕ and u � ψ . Hence, u �a u by Definition 9, the
assumption w ∼a u, and the assumption w � ϕ �a ψ of the theorem. Therefore,
partial order �a is not strict, which contradicts item 3 of Definition 1.

To prove that w � ϕ �a ψ , consider any epistemic worlds u, u′ ∈ W such that
w ∼a u, w ∼a u′, u � ϕ ∧¬ψ , and u′ � ψ ∧¬ϕ. By Definition 9, it suffices to show
that u �a u′. Indeed, the statements u � ϕ ∧ ¬ψ and u′ � ψ ∧ ¬ϕ imply that u � ϕ

and u′ � ψ . Thus, u �a u′ by the assumption w � ϕ �a ψ of the theorem, item 5 of
Definition 2, and the assumptions w ∼a u and w ∼a u′.
(⇐) : Suppose that w � Ka(¬ϕ ∨ ¬ψ) and w � ϕ �a ψ . Towards the proof of
w � ϕ �a ψ , consider any epistemic worlds u, u′ ∈ W such that

w ∼a u, (26)

w ∼a u′, (27)

u � ϕ, (28)

u′ � ψ. (29)

ByDefinition 9, it suffices to show that u �a u′. Indeed, the assumptionw � Ka(¬ϕ∨
¬ψ), item 4 of Definition 2, and assumptions (26) and (27) imply that

u � ¬ϕ ∨ ¬ψ, (30)

u′ � ¬ϕ ∨ ¬ψ. (31)

Statements (28) and (30) imply

u � ϕ ∧ ¬ψ. (32)

Similarly, (29) and (31) imply

u′ � ψ ∧ ¬ϕ. (33)

Finally, by Definition 9, the assumption w � ϕ �a ψ and statements (26), (27), (32),
and (33) imply that u �a u′. �

Onemight be concerned that Theorem4 proves thatmodality� is definable through
just modality�, while Theorem 5 shows how to define modality� through modalities� and K . However, as the next theorem shows, modality K itself is definable through
modality �. Note that a similar result for modality � has already been established
earlier as Theorem 3.

Theorem 6 w � Kaϕ iff w � (ϕ �a ¬ϕ)∧ ((¬ϕ)�a ϕ)∧ϕ for each epistemic world
w of each epistemic model with preferences.
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Proof (⇒) : Suppose w � (ϕ �a ¬ϕ) ∧ ((¬ϕ) �a ϕ) ∧ ϕ. Thus, one of the following
cases takes place:
Case I: w � ϕ �a ¬ϕ. Thus, by Definition 9, there are epistemic worlds u, u′ such
that w ∼a u, w ∼a u′, u � ϕ ∧ ¬¬ϕ, u′ � ¬ϕ ∧ ¬ϕ, and u �a u′. Hence, w ∼a u′
and u′ � ¬ϕ. Therefore, w � Kaϕ by items 2 and 4 of Definition 2.
Case II: w � (¬ϕ) �a ϕ. The proof in this case is similar to the proof in the case
above.
Case III: w � ϕ. Therefore, w � Kaϕ by item 4 of Definition 2.
(⇐) : Towards the contradiction, suppose that

w � ϕ �a ¬ϕ, (34)

w � (¬ϕ) �a ϕ, (35)

w � ϕ, (36)

w � Kaϕ. (37)

By item 4 of Definition 2, statement (37) implies that there is an epistemic world
u ∈ W such that w ∼a u and u � ϕ. Thus, taking into account statement (36),

w � ϕ ∧ ¬¬ϕ and u � ¬ϕ ∧ ¬ϕ.

Hence, by Definition 9, statements (34) and (35) imply w �a u and u �a w, respec-
tively. Therefore, partial order�a is not strict, which contradicts item 3 of Definition 1.

�

7.3 Betterness modality

In this article, we study the properties of the preferences expressible through the binary
preference modality ϕ �a ψ . As discussed in the introduction, an alternative language
for reasoning about preferences is proposed by Van Benthem et al. (2009) and it is
later used in Christoff et al. (2021). Their language contains a unary “better” modality
[>]aϕ. Informally, [>]aϕ stands for “statement ϕ is true in all worlds that agent a
prefers to the current world”. Liu (2011, p.56) has combined this modality with the
knowledge modality in a single-agent setting. Formally, the semantics of modality
[>]aϕ is captured in the following definition:

Definition 10 w � [>]aϕ, if u � ϕ for each world u such that u �a w.

In this section, we compare the expressive powers of the preference and the “better”
modalities. Note that item 5 of Definition 2 specifies the semantics of w � ϕ �a ψ in
terms of the worlds indistinguishable from world w. At the same time, Definition 10
does not restrict the quantifier over u to the worlds indistinguishable from world w.
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Fig. 4 Two Epistemic Models with Preferences

Thus, intuitively, modalities �a and [>]a are not likely to be definable through each
other. Perhaps, it is more interesting to compare the expressive powers of � and
modality [>]′a that restricts u to the worlds indistinguishable from world w:

Definition 11 w � [>]′aϕ, if u � ϕ for each world u such that w ∼a u and u �a w.

We start with an observation by van Benthem et al. (2006) that modality � cannot
be expressed through a combination of modalities [>], [>]′, and K . Their original
result is for perfect information models with non-strict partial order, but it could be
easily adopted to our strict partial order setting with imperfect information. We state
the result as Theorem 7 below. Our proof is a modified version of the original one from
van Benthem et al. (2006). ByΨ we denote the language that contains modalities [>],
[>]′, and K , but does not contain modality �. In other words, language Ψ is defined
by the grammar:

ϕ := p | ¬ϕ | ϕ → ϕ | Ka | [>a]ϕ | [>]′aϕ.

To prove Theorem 7, we construct two epistemic models with preferences indistin-
guishable in language Ψ , but distinguishable in language Φ.

The two models that we use are depicted in Fig. 4. We refer to these models as the
left and the right ones. Without loss of generality, in this example, we assume that
the set of propositional variables contains a single variable p and the set of agents A
contains a single agent a. By �l and �r we denote the preference relations of the left
and the right models, respectively. Similarly, by �l and �r we denote the satisfaction
relations of these models.

We start the proof with an auxiliary observation.

Lemma 18 For any formula ϕ ∈ Ψ ,

1. w �l [>]aϕ iff w �l [>]′aϕ for any world w ∈ {w1, w2, w3, w4},
2. w �r [>]aϕ iff w �r [>]′aϕ for any world w ∈ {w1, w2, w3, w4}.
Proof Both parts of the lemma follow from Definition 10 and Definition 11 because
all worlds in the left model and all worlds in the right model are indistinguishable by
agent a. �
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The next lemma shows that the left and the right models are indistinguishable in
language Ψ . We state this lemma in a slightly more general form which is easier to
prove by induction.

Lemma 19 wi �l ϕ iff w j �r ϕ for any formula ϕ ∈ Ψ and any integers i, j ∈
{1, 2, 3, 4} such that i ≡ j (mod 2).

Proof We prove the statement of the lemma by structural induction on formula ϕ.
If ϕ is a propositional variable, then the statement of the lemma follows from the
definitions of the left and the right models, see Fig. 4. If formula ϕ is a negation or an
implication, then the statement follows from the induction hypothesis and items 2 or
3 of Definition 2 in the standard way.

Assume that formula ϕ has the form Kaψ .
(⇒) : Suppose that w j �r K aψ . Thus, by item 4 of Definition 2, there is an integer
j ′ ∈ {1, 2, 3, 4} such that w j ′ �r ψ . Hence, w j ′ �l ψ by the induction hypothesis.
Therefore,wi �l K aψ by item 4 of Definition 2. The proof in (⇐) direction is similar.

Assume that formula ϕ has the form [>]aψ . Recall that numbers i and j have the
same parity by the assumption of the lemma. We consider the following two cases
separately.
Case I: Numbers i and j are even. Then, there is no world u in the left model such
that u �l

a wi , see Fig. 4 (left). Thus, wi �l [>]aψ is vacuously true by Definition 10.
Similarly, w j �r [>]aψ .
Case II: Numbers i and j are odd.
(⇒) : Suppose that w j �r [>]aψ . Thus, by Definition 10, there is a world u in the
right model such that u �r

a w j and u �r ψ . Then, the statement u �r
a w j and the

assumption of the case that j is odd imply that u = w j+1, see Fig. 4 (right). Thus,
w j+1 �r ψ . Hence, w j+1 �l ψ by the induction hypothesis. Note that w j+1 �l

a w j

because number j is odd, see Fig. 4 (left). Therefore, w j �l [>]aψ by Definition 10.
(⇐) : Suppose that wi �l [>]aψ . Thus, by Definition 10, there is a world u in the
left model such that u �l

a wi and u �l ψ . Note that statement u �l
a wi implies that

u = wk for some even integer k, see Fig. 4 (right). Hence, by the induction hypothesis,

w2 �r ψ and w4 �r ψ. (38)

Recall that integer j is odd by the assumption of the case. Then, j + 1 ∈ {2, 4}. Thus,
w j+1 �r ψ by statement (38). Note that w j+1 �r

a w j because j is odd, see Fig. 4
(right). Therefore, w j �r [>]aψ by Definition 10.

Finally, if formula ϕ has the form [>]′aψ , then the statement of the lemma follows
from the case ϕ = [>]aψ by Lemma 18. �

The next two lemmas show that the left and the right models are distinguishable in
language Φ.

Lemma 20 w �l p �a ¬p for any world w ∈ {w1, w2, w3, w4}.
Proof Consider any worlds u, v ∈ {w1, w2, w3, w4} such that

u �l p and v �l ¬p. (39)
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Fig. 5 An Epistemic Model with
Preferences
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By item 5 of Definition 2, it suffices to show that u �l
a v. Indeed, assumptions (39)

imply that u ∈ {w2, w4} and v ∈ {w1, w3}, see Fig. 4. Therefore, u �l
a v, see again

Fig. 4. �
Lemma 21 w �r p �a ¬p for any world w ∈ {w1, w2, w3, w4}.
Proof Consider any world w ∈ {w1, w2, w3, w4}. Note that w ∼r

a w2, w ∼r
a w3,

w2 �r p, w3 �r ¬p, and w2 �
r
a w3, see Fig. 4. Therefore, w �r p �a ¬p by item 5

of Definition 2. �
The next theorem follows from the three previous lemmas.

Theorem 7 Modality� is not expressible in languageΨ over the class of all epistemic
models with preferences.

Next, we show that neither of the modalities [>] and [>]′ is expressible in language
Φ. To prove this, we consider the epistemic model with preferences depicted in Fig. 5.
In Lemma 22, we show that worlds w1 and w2 of this model are not distinguishable
in language Φ. In Lemma 23 and Lemma 24, we show that they are distinguishable
using modalities [>] and [>]′.
Lemma 22 w1 � ϕ iff w2 � ϕ for any formula ϕ ∈ Φ.

Proof We prove the statement by induction on structural complexity of formula ϕ. If
ϕ is a propositional variable p, then w1 � ϕ and w2 � ϕ, see Fig. 5. The case when
formula ϕ is a negation or an implication follows from the induction hypothesis and
items 2 and 3 of Definition 2 in the standard way.

Suppose that formula ϕ has the form Kaψ .
(⇒) : Assume that w2 � Kaψ . Hence, by item 4 of Definition 2, there is a world u
such thatw2 ∼a u and u � ψ . Note thatw1 ∼a w2, see Fig. 5. Hence, there is a world
u such that w1 ∼a u and u � ψ . Therefore, w1 � Kaψ by item 4 of Definition 2.
The proof of the case (⇐) is similar.1

Suppose that formula ϕ has the form ψ1 �a ψ2.
(⇒) :Assume thatw2 � ψ1 �a ψ2. Hence, by item 5 of Definition 2, there are worlds
u, v such that w2 ∼a u, w2 ∼a v, u � ψ1, v � ψ2, and u �a v. Note that w1 ∼a w2,
see Fig. 5. Hence, there are worlds u, v such that w1 ∼a u, w1 ∼a v, u � ψ1, v � ψ2,
and u �a v. Therefore, w1 � ψ1 �a ψ2. The proof of the case (⇐) is similar. �
1 Alternatively, the case when ϕ has the form Kaψ can be shown using Theorem 3.
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Lemma 23 w1 � [>]p and w1 � [>]′ p.
Proof Note thatw2 � p andw2 �a w1, see Fig. 5. Thus,w1 � [>]p by Definition 10.
Note also that w1 ∼a w2, see Fig. 5. Therefore, w1 � [>]′ p by Definition 11. �
Lemma 24 w2 � [>]p and w2 � [>]′ p.
Proof To prove the first statement, note that there is no world u such that u �a w,
see Fig. 5. Thus, vacuously, w2 � [>]p by Definition 10. The proof of the second
statement is similar. �

The next theorem follows from the three lemmas above.

Theorem 8 Modalities [>]a and [>]′a are not expressible in languageΦ over the class
of all epistemic models with preferences.

As we have seen in Theorem 7, modality � is not expressible in language Ψ over
the class of all epistemic models with preferences. At the same time, as we show in
the next theorem, � is expressible through modalities [>]′ and K over the class of
epistemic models with total preference orders. For the setting where agents cannot
distinguish any worlds (and, thus, K is the universal modality and modalities [>] and
[>]′ are equivalent), this result is stated in (Liu, 2011, p.39).
Theorem 9 w � ϕ �a ψ iff w � Ka(ϕ → ¬ψ ∧ [>]′a¬ψ) for any world w of any
epistemic model with preferences such that strict order ≺a is total.

Proof (⇒) : Consider any world u such that w ∼a u. By item 4 of Definition 2, it
suffices to show that u � ϕ → (¬ψ ∧[>]′a¬ψ). Suppose that u � ϕ. Then, by item 3
of Definition 2, it suffices to prove that u � ¬ψ ∧ [>]′a¬ψ . Suppose the opposite.
Thus, by Definition 2, either u � ψ or u � [>]′a¬ψ . We consider these two cases
separately:
Case I: u � ψ . Then, u �a u by the assumption w � ϕ �a ψ of the lemma, the
assumptions w ∼a u and u � ϕ, and item 5 of Definition 2. Note that the statement
u �a u contradicts �a being a strict order.
Case II: u � [>]′a¬ψ . Thus, by Definition 11, there is a world v such that u ∼a v,
v �a u, and v � ¬ψ . Hence, v � ψ by item 2 of Definition 2. Also, w ∼a v by the
assumption w ∼a u. By item 5 of Definition 2, the assumption w � ϕ �a ψ of the
lemma and the statements w ∼a u, w ∼a v, u � ϕ, and v � ψ imply that u �a v.
The last statement contradicts the assumption v �a u because relation �a is a strict
order.
(⇐) : Consider any worlds u, v ∈ W such that w ∼a u, w ∼a v, and

u � ϕ, v � ψ. (40)

By item 5 of Definition 2, it suffices to show that u �a v. Suppose the opposite:

u �a v. (41)
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By item 4 of Definition 2, the assumption w � Ka(ϕ → ¬ψ ∧ [>]′a¬ψ) of the
theorem and the assumption w ∼a u imply that

u � ϕ → ¬ψ ∧ [>]′a¬ψ.

Thus, by the part u � ϕ of statement (40) and Definition 2,

u � ψ, u � [>]′a¬ψ. (42)

The part v � ψ of statement (40) and the part u � ψ of statement (42) imply that
u �= v. Hence, v �a u by statement (41) and the assumption of the theorem that order
�a is total. Then, the part u � [>]′a¬ψ of statement (42) implies that v � ¬ψ by
Definition 11 and the assumptions w ∼a u and w ∼a v. Therefore, v � ψ by item 2
of Definition 2, which contradicts the part v � ψ of statement (40). �

As we have seen in the previous theorem, over the class of all epistemic models
with total preference order, modality � is expressible through modalities [>]′ and K .
We conclude this section with the observation that the opposite is not true.

Theorem 10 Modalities [>]a and [>]′a are not expressible in language Φ over the
class of epistemic models with preferences in which strict order �a is total.

Proof The proof of this theorem is identical to the proof of Theorem 8 because order
�a in Fig. 5 is total. �

7.4 Non-strict preferences

The preferences that we consider in this article are strict. There are at least four ways
in which non-strictness could be introduced into our setting.
First Way Item 3 of Definition 1 requires relation to be a strict partial order. In other
words, this item requires the relation to be irreflexive and transitive. If the irreflexivity
condition is removed, then the Strictness axiom is no longer sound. Note, however,
that this axiom is used only once in the proof of completeness. Namely, it is applied
in Lemma 8 to show irreflexivity of relation �a in the canonical model. Thus, if the
irreflexivity condition and the Strictness axiom are removed, then the existing proof of
completeness remains valid. Hence, our logical system (without the Strictness axiom)
is sound and complete with respect to the modified semantics.

It is interesting to point out that the Strictness Axiom is also used in the proof of
Theorem 3 to establish definability of knowledge through preferences. It is easy to see
that if the Strictness axiom and the irreflexivity assumption of Item 3 of Definition 1
are omitted, then not only the proof of Theorem 3 is not valid, but even the statement of
the theorem is not true. We think that, in this case, knowledge is not definable through
preferences, but we have not tried to prove this.
Second Way The requirement of irreflexivity in item 3 of Definition 1 can be replaced
with reflexivity and antisymmetry. This would mean that relation � is a partial order.
In this case, the Strictness axiom will still not be valid, but the existing proof of
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completeness cannot be easily modified to work in the new setting. The problem
comes from the fact that we don’t know how to make relation � of the canonical
model to be antisymmetric. As a result, we cannot prove a completeness theorem in
this case.

In this setting, the statement of Theorem 3 remains false, but the modality Kaϕ is
definable via preferences as (ϕ �a (¬ϕ)) ∧ ((¬ϕ) �a ϕ) ∧ ϕ. Note that this way to
define knowledge through preferences is not valid in the setting of above First Way.
Third Way Another option is to keep Definition 1 unchanged. Instead, one can first
define relation �a as a reflexive closure of relation �a . In other words, w �a u is
true if either w = u or w �a u. Then, item 5 of Definition 2 can be adjusted to use
relation �a instead of relation �a . It is easy to see that the logical system created by
this change is the same as in Second Way. All that we said above applies here as well.
Fourth Way Finally, without any changes to the existing definitions, a non-strict pref-
erence modality ϕ �a ψ can be defined as Ka(ϕ ↔ ψ)∨ (ϕ �a ψ). It is interesting to
note that the original strict preference modality ϕ �a ψ is definable via Ka and �a as
¬Ka(ϕ ↔ ψ)∧ϕ �a ψ . Because of this mutual definability, expressive power of the
language containing modalities Ka and �a is the same as of our original language.
Thus, most of the results of this article, including the completeness theorem, apply to
the language with modalities Ka and �a . To conclude, note that Kaϕ is equivalent in
this setting to ϕ �a �, where, as usual, � is ¬⊥.

7.5 Preferences and public announcements

Public Announcement Logic (PAL) is a popular example of a dynamic epistemic
logic (van Ditmarsch et al., 2007; Pacuit, 2013) that combines knowledge modality
Ka with public announcement modality [χ ]ϕ. Informally, the expression [χ ]ϕ stands
for “statement ϕ is true after a public announcement of truthful statement χ”. Mul-
tiple extensions of Public Announcement Logic are suggested. Wáng and Ågotnes
(2013) add to it the distributed knowledge modality. Ågotnes et al. (2010) propose a
group announcement modality 〈G〉ϕ that means “group G can announce certain facts,
individually known to members of the group, after which statement ϕ will be true”.
Galimullin and Alechina (2017) study a modality 〈G〉ϕ that states “ϕ will become true
after an announcement by group G and will remain true after further announcements
made by agents outside of group G”.

The logic of epistemic preferences can be extended with the public announcement
modality [ϕ]ψ . The semantics of such an extension combines Definition 2 with the
standard semantics of PAL (van Ditmarsch et al., 2007). It is a well-known observation
that after a public announcement of a true statement χ , this statement might no longer
be true. It is interesting to note that a public announcement might not only affect
agent’s preferences, but it can even change them to the opposite. Namely, below we
construct an epistemic model with preferences and three statements ϕ, ψ , and χ such
that ϕ �a ψ and [χ ](ψ �a ϕ) in some world of the model.

The model that we consider captures the situation in which an agent a tosses a
coin while being fearful of a world apocalypse happening tomorrow. The agent is
indifferent to the outcome of the coin toss, but he would prefer the apocalypse not
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to happen. Formally, our model contains the following four worlds indistinguishable
by the agent: (apocalypse, heads), (apocalypse, tails), (no apocalypse, heads),
(no apocalypse, tails). Consider the following three statements:

ϕ ≡ Ka(“It’s heads”) ↔ “World apocalypse is tomorrow”, (43)

ψ ≡ Ka(“It’s heads”) ↔ ¬“World apocalypse is tomorrow”,

χ ≡ “It’s heads”. (44)

Suppose that the coin lands heads up. Note that before the truthful announcement
χ , agent a does not know the result of the toss. Thus, the statement Ka(“It’s heads”)
is false. Hence, due to statements (43) and (44), before the announcement, agent a
knows that ϕ is equivalent to

¬“World apocalypse is tomorrow”

while ψ is equivalent to “World apocalypse is tomorrow”. Then, ϕ �a ψ because the
agent would prefer the apocalypse not to happen.

At the same time, after the truthful public announcement of χ , the statement
Ka(“It’s heads”) is true. Hence, again due to statements (43) and (44), after the
announcement, agent a knows that ϕ is equivalent to “World apocalypse is tomor-
row” while ψ is equivalent to ¬“World apocalypse is tomorrow”. Thus, [χ ](ψ �a ϕ)

again because the agent would prefer the apocalypse not to happen. Therefore, public
announcement of χ changes the preference of the agent to the opposite.

8 Conclusion

In this article, we have proposed a new approach to defining preference in the imperfect
information setting. We say that an agent prefers ϕ over ψ if, among all indistinguish-
able worlds, he prefers thosewhere ϕ is true to thosewhereψ is true.We have captured
this definition as a binary modality and compared our approach to several others exist-
ing in the literature. Our main technical result is a complete logical system describing
the interplay between the preference modality and the individual knowledge modality
in themultiagent setting. The proof of completeness theorem is using a newly proposed
“tumbled pairs” construction.
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Proof of Soundness

The soundness of the Truth, the Negative Introspection, and the Distributivity axioms
are well-known.We prove the soundness of each of the remaining axioms as a separate
lemma.

Lemma 25 If w � ϕ �a ψ , then w � Ka(ϕ �a ψ).

Proof Consider any world w′ ∈ W such that w ∼a w′. By item 4 of Definition 2, it
suffices to show thatw′ � ϕ �a ψ . Towards this proof, consider any worlds u, u′ ∈ W
such that w′ ∼a u, w′ ∼a u′, u � ϕ, and u′ � ψ . By item 5 of Definition 2, it suffices
to prove that u �a u′.

Indeed, the assumptions w ∼a w′, w′ ∼a u, and w′ ∼a u′ imply that w ∼a u and
w ∼a u′. Thus, u �a u′ by item 5 of Definition 2, the assumption w � ϕ �a ψ of the
lemma, and the assumptions u � ϕ and u′ � ψ . �
Lemma 26 If w � Ka(ϕ → ψ) and w � ψ �a χ , then w � ϕ �a χ .

Proof Consider any worlds u, u′ ∈ W such thatw ∼a u,w ∼a u′, u � ϕ, and u′ � χ .
By item 5 of Definition 2, it suffices to show that u �a u′.

The assumption w ∼a u implies u � ϕ → ψ by item 4 of Definition 2 and the
assumption w � Ka(ϕ → ψ) of the lemma. Then, u � ψ by the assumption u � ϕ

and item 3 of Definition 2. Therefore, u �a u′ by the assumption w � ψ �a χ of the
lemma and the assumptions w ∼a u, w ∼a u′, and u′ � χ . �
Lemma 27 If w � Ka(ϕ → ψ) and w � χ �a ψ , then w � χ �a ϕ.

Proof Consider any worlds u, u′ ∈ W such thatw ∼a u,w ∼a u′, u � χ , and u′ � ϕ.
By item 5 of Definition 2, it suffices to show that u �a u′.

The assumption w ∼a u′ implies u′ � ϕ → ψ by item 4 of Definition 2 and the
assumption w � Ka(ϕ → ψ) of the lemma. Then, u′ � ψ by the assumption u′ � ϕ

and item 3 of Definition 2. Therefore, u �a u′ by the assumption w � χ �a ϕ of the
lemma and the assumptions w ∼a u, w ∼a u′, and u � χ . �
Lemma 28 If w � ϕ �a ψ , then w � ϕ ∧ ψ .

Proof Suppose that w � ϕ ∧ ψ . Thus, w � ϕ and w � ψ . Hence, w �a w by item 5
of Definition 2 and the assumption w � ϕ �a ψ of the lemma. Therefore, relation �a

is not a strict partial order, which contradicts item 3 of Definition 1. �
Lemma 29 w � ⊥ �a ϕ.

Proof Consider any worlds u, u′ ∈ W such that w ∼a u, w ∼a u′, u � ⊥, and
u′ � ϕ. By item 5 of Definition 2, it suffices to show that u �a u′. This is vacuously
true because there is no world u ∈ W such that u � ⊥. �

123

http://creativecommons.org/licenses/by/4.0/


Synthese           (2023) 201:77 Page 35 of 36    77 

The proof of the next lemma is similar to the previous one.

Lemma 30 w � ϕ �a ⊥.

Lemma 31 If w � ϕ �a ψ , w � ψ , and w � ψ �a χ , then w � ϕ �a χ .

Proof Consider any worlds u, u′ ∈ W such thatw ∼a u,w ∼a u′, u � ϕ, and u′ � χ .
By item 5 of Definition 2, it suffices to show that u �a u′.

Note that w ∼a w. Thus, u �a w by item 5 of Definition 2, the assumption
w � ϕ �a ψ of the lemma, the assumptions w ∼a u and u � ϕ, and the assumption
w � ψ of the lemma.

Similarly, w �a u′ by item 5 of Definition 2, the assumptions w � ψ �a χ and
w � ψ of the lemma, and the assumptions w ∼a u′ and u′ � χ .

Finally, note that the statements u �a w and w �a u′ imply that u �a u′ because
relation �a is transitive. �
Lemma 32 If w � ϕ �a χ and w � ψ �a χ , then w � (ϕ ∨ ψ) �a χ .

Proof Consider any worlds u, u′ ∈ W such that w ∼a u, w ∼a u′, u � ϕ ∨ ψ ,
and u′ � χ . By item 5 of Definition 2, it suffices to show that u �a u′. Indeed, the
statement u � ϕ ∨ ψ implies that either u � ϕ or w � ψ . If u � ϕ, then u �a u′ by
the assumptionw � ϕ �a χ of the lemma, item 5 of Definition 2, and the assumptions
w ∼a u, w ∼a u′, and u′ � χ . The case w � ψ is similar. �

The proof of the next lemma is similar to the previous one.

Lemma 33 If w � ϕ �a ψ and w � ϕ �a χ , then w � ϕ �a (ψ ∨ χ).

Auxiliary Lemma

Lemma 7 Relation ∼a is an equivalence relation on set W for each a ∈ A.

Proof Reflexivity:Consider any formula ϕ ∈ Φ. Suppose that Kaϕ ∈ w. It suffices to
show that ϕ ∈ w. Indeed, the assumption Kaϕ ∈ w impliesw � ϕ by the Truth axiom
and the Modus Ponens inference rule. Therefore, ϕ ∈ w because set w is maximal.
Symmetry: Consider any epistemic worlds w, u ∈ W such that w ∼a u and any
formula Kaϕ ∈ u. It suffices to show that ϕ ∈ w. Suppose the opposite. Then, ϕ /∈ w.
Hence, w � ϕ because set w is maximal. Thus, w � Kaϕ by the contraposition of
the Truth axiom. Then, ¬Kaϕ ∈ w because set w is maximal. Thus, w � Ka¬Kaϕ

by the Negative Introspection axiom and the Modus Ponens inference rule. Hence,
Ka¬Kaϕ ∈ w because setw is maximal. Then,¬Kaϕ ∈ u by the assumptionw ∼a u
and Definition 4. Thus, Kaϕ /∈ u because set u is consistent, which contradicts the
assumption Kaϕ ∈ u.
Transitivity: Consider any worlds w, u, v ∈ W such that w ∼a u and u ∼a v and
any formula Kaϕ ∈ w. It suffices to show that ϕ ∈ v. The assumption Kaϕ ∈ w

implies w � KaKaϕ by Lemma 4 and the Modus Ponens inference rule. Thus,
KaKaϕ ∈ w because set w is maximal. Hence, Kaϕ ∈ u by the assumption w ∼a u
and Definition 4. Therefore, ϕ ∈ v by the assumption u ∼a v and Definition 4. �
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