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Abstract
The article proposes a new approach to reasoning
about knowledge and strategies in multiagent sys-
tems. It emphasizes data, not agents, as the source
of strategic knowledge. The approach brings to-
gether Armstrong’s functional dependency expres-
sion from database theory, a data-informed knowl-
edge modality based on a recent work by Bal-
tag and van Benthem, and a newly proposed data-
informed strategy modality. The main technical re-
sult is a sound and complete logical system that de-
scribes the interplay between these three logical op-
erators.

1 Introduction
With technological progress, more information is either
stored in databases and remote servers or exchanged directly
between autonomous agents. What machines know and can
do will rely more and more on the access to such informa-
tion rather than the individual memory. Personal assistants,
like Amazon Alexa, often use external sources of data such
as Wikipedia and Answers.com. Self-driving cars can access
map updates in the cloud. Vehicular ad hoc networks (vehic-
ular cloud) are being designed to share traffic and other lo-
calised information between nearby vehicles [Ahmed et al.,
2019]. Future medical robots will be treating patients with
highly contagious diseases relying on knowledge and skills
of doctors and nurses placed in safe remote locations [Zhu et
al., 2021].

In this article, we formally define and study the properties
of knowledge and abilities in a multiagent setting where data
is decoupled from the agents.

1.1 Deep Sea Rescue Example
Suppose that three naval rescue robots, Bluewater (b), Lucky
(l), and Extreme (e), are sent on a mission to save the crew of
a sunk submarine that has one hour of oxygen left. The area
in which the submarine sank could be divided into 9 squares
depicted in Figure 1. The actual location of the submarine
(second row, first column) is not known to the robots and it
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Figure 1: Rescue example.

takes one hour for one robot to search through one square.
Note that even a single robot in this setting has a strategy to
save the crew (search first square in the second row), but the
robot does not know that this strategy would guarantee the
success of the rescue operation.

Let us now suppose that the rescue robots somehow learned
that the sub is located in the second row. Then, they know
a joint strategy to save the crew. The strategy consists in
three of them searching through different squares in the sec-
ond row. Moreover, observe that anyone who knows in which
row (r) the sub is, knows the strategy that Bluewater, Lucky,
and Extreme can use to save the crew:

Sb,l,er (“The crew is safe”).

We write SCXϕ to state that the knowledge of a strategy that
coalition C can use to achieve ϕ could be gained from the
values of variables in set X . In other words, anyone who
knows the values of the variables in set X knows the strategy
that coalition C can use to achieve ϕ. In this context, we
refer to the set of variables X as “dataset”. We read SCXϕ
as “dataset X informs a strategy of coalition C to achieve
ϕ”. Note that for SCXϕ to be true, it is not significant whether
the members of the coalition C themselves know values of
variables in dataset X . Furthermore, any knowledge that the
members of the coalitionC might have does not affect if SCXϕ
is true or not. For this reason, we refer to the members of the
coalition C as actors rather than agents.

Recall that Bluewater, just like each of the other robots,
has a strategy to save the crew (search the first square in the



second row), but it is not true that anyone who knows r would
know how Bluewater can do this. Thus,

¬Sbr(“The crew is safe”).

In other words, Bluewater’s strategy to rescue the crew is
not informed by the dataset {r}. The same dataset also does
not inform the strategy for Bluewater and Lucky:

¬Sb,lr (“The crew is safe”).

Let us further assume that the two of the squares contain
old shipwrecks. These are the second square in the first row
and the third square in the second row, Figure 1.

Let Boolean variable s is true in the squares that contain
shipwrecks and is false in the other squares. Observe that
everyone who knows the row and the ship wracks data (s) of
the square where the sub has been sunk, would know that the
sub is located in one of the first two squares in the second
row. Thus, any such person would know how Bluewater and
Lucky can achieve the goal:

Sb,lr,s(“The crew is safe”).

The validity of the last statement depends on the location
of the sub. It would not be true if the sub is located in any of
the squares of the third row. In other words, the satisfiability
of statement SCXϕ depends on which of the possible worlds
is the current world. In the setting of our example, there are
nine possible worlds, corresponding to different locations of
the sub. By default, all statements that we consider in this
section assume that the current world is the one where the
sub is located in the first cell of the second row. Observe that
the column (c) and the wreck data do not inform a strategy
for Bluewater and Lucky:

¬Sb,lc,s(“The crew is safe”).

because all three squares in the first column have no wrecks.
Let us also assume that the ocean floor in some squares is

covered with sand and in the others with rocks. The squares
with rock floor are shaded in gray in Figure 1. Since, the
sub is laying on the sandy floor and only two of squares with
sandy floor have no shipwrecks, everyone who knows the
floor type and the ship wreck data, knows the strategy that
Bluewater and Lucky can use to save the crew:

Sb,lf,s(“The crew is safe”).

The validity of the last statement also depends on the cur-
rent world. It would not be true if the sub was laying on rocky
floor. One might also observe that row, floor type, and wreck
data inform a strategy for Bluewater alone to save the crew:

Sbr,f,s(“The crew is safe”).

The numbers in Figure 1 show the depth (d), in meters, of
the ocean in each square. Observe that the depth of the ocean
in white (sandy) squares is equal to either 115 or 110. Thus,
anyone who knows the type of the floor on which the sub is
laying knows that d is equal to either 115 or 110. We write
this as

Kf (“The sub is laying at either depth 115 or depth 110”).

In general, we write KXϕ if the knowledge of ϕ about the
current world can be gained from the values of variables in
dataset X . In other words, anyone who knows the values of
the variables in dataset X for the current world knows that
statement ϕ is true in the current world. We read KXϕ as
“dataset X informs the knowledge of statement ϕ”.

Note that variable f does not inform strategy for Bluewater
and Lucky to save the crew:

¬Sb,lf (“The crew is safe”)

because there are four different squares with sandy floor.
However, everyone who knows the value of f knows that the
depth at which the sub is laying is either 115 or 110. Thus,
everyone who knows the value of f knows that the knowl-
edge of variable d reduces the number of locations where the
sub is to just two. Hence, everyone who knows the value of
f knows that variable d informs a strategy for Bluewater and
Lucky to save the crew:

KfS
b,l
d (“The crew is safe”).

In this article, in addition to data-informed modalities SXϕ
and KXϕ, we also consider dependency expression X B Y .
It means that, in the current world, the knowledge of the val-
ues of variables in dataset X informs the knowledge of the
values of variables in dataset Y . We read X B Y as “dataset
X informs dataset Y ”. For example, note that all squares in
the first column have no wrecks. Thus, the knowledge of the
column in which the sub is located informs the knowledge of
the wreck data: cB s. At the same time, ¬(rB s) because no
cells in the second row have the same wreck data.

2 Games
Throughout this article, we assume a fixed nonempty set of
propositional variables P , a fixed set of data variables V , and
a fixed set of actorsA. Recall that we use term “actors” rather
than “agents” to emphasise that the knowledge in our setting
is decoupled from the actions.

By a dataset we mean an arbitrary subset of V . In this
section, we introduce models of our logical system, called
games. Informally, a game includes a set of possible states
and each of data variables is assigned a value in each of the
states. An actor who is informed about a dataset cannot dis-
tinguish two states when all variables in the dataset have the
same values in both states. Note that it is only important if
a given variable has the same value in two given states and
it is not important what exactly the value of the variable is.
Thus, for the sake of simplicity, our formal definition below
does not include values of variables. It only contains an indis-
tinguishability relation ∼x on possible states associated with
each data variable x ∈ V . Intuitively, two states are indis-
tinguishable by a data variable x if this variable has the same
value in both states. In this article, by BA we denote the set
of all functions from set A to set B.

Definition 1. A game is a triple (W, {∼x}x∈V ,∆,M, π),
where

1. W is a (possibly empty) set of states,



2. ∼x is an indistinguishability equivalence relation on set
W for each data variable x ∈ V ,

3. ∆ is a nonempty set of “actions”,
4. M ⊆W ×∆A ×W is a “mechanism” of the game,
5. π(p) ⊆W for each propositional variable p ∈ P .
By a complete action profile we mean an arbitrary element

of the set ∆A. By a coalition we mean an arbitrary subset
C ⊆ A of actors. By an action profile of a coalition C we
mean an arbitrary element of the set ∆C .

Our introductory example has 9 initial states, representing
the different locations of the sub, and two final states (“saved”
and “not saved”). Note that although in this example the
states are naturally divided into initial and final, the same is
not true in general. In Definition 1, we assume that, the game
might make multiple consecutive transitions between states.

In our example, the set V contains variables r, c, s, f , and
d. If w is the current state, in which the sub is located at
(2, 1), and w′ is the state in which the sub is located at (1, 2),
then w ∼f w

′ and w ∼d w
′ because squares (2, 1) and (1, 2)

have the same floor type and the same depth.
To keep the notations simple, in Definition 1, we assume

that the set of actions ∆ is the same for all actors in all
states. This assumption is not significant for our results be-
cause available actions can always be combined into a single
set and the additional actions can be assigned some “default”
meaning. At the same time, our assumption that set ∆ is
nonempty is significant. Without this assumption, the Public
Knowledge axiom, introduced in Section 4, is not valid.

Note that the mechanism M is a relation, not a function.
Informally, (w, δ, w′) ∈ M if under complete action profile
δ ∈ ∆A the game can transition from state w to state w′.
Defining mechanism as a relation allows us to model non-
deterministic games where from a given state under a given
complete action profile the game can transition to one of sev-
eral possible “next” states. Note that we also allow that for
some combinations of a state and a complete action profile
there might be no next states. We interpret this as a termina-
tion of the game.

In our introductory example, the actions consist in search-
ing a square. Since there are nine squares, the set ∆ has nine
actions corresponding to these squares. The game transitions
from the current initial state w = (2, 1) to final state “saved”
if at least one of the actions is searching in the square where
the sub is laying. Otherwise, the game transitions to the fi-
nal state “not saved”. Note that we do not allow the actors
to repeat the game. Thus, no further transitions can be made
from either of the two final states. We model this by assum-
ing that the mechanism M of this game has no triples whose
first element is one of the final states of the game.

As common in modal logics, we interpret propositional
variables as properties of states. Informally, w ∈ π(p) if
propositional variable p is true in state w ∈ W . This is dif-
ferent from the setting of [Baltag and van Benthem, 2021],
where the authors have used atomic predicates instead of
propositional variables. The predicates are true or false de-
pending not on the state, but on the values of data variables in
the state. In other words, the atomic formulae in their setting
capture properties of the variables rather than of the states.

We discuss the significance of this difference in the next sec-
tion.

3 Syntax and Semantics
Language Φ of our logical system is defined by the grammar

ϕ ::= p | X BX | ¬ϕ | (ϕ→ ϕ) | KXϕ | SCXϕ,

where p ∈ P is a propositional variable, X ⊆ V is a dataset,
and C ⊆ A is a coalition. We read X B Y as “dataset X in-
forms dataset Y ”, KXϕ as “datasetX informs the knowledge
of ϕ”, and SCXϕ as “dataset X informs a strategy of coali-
tion C to achieve ϕ”. By KXϕ we mean formula ¬KX¬ϕ.
We also assume that constant true >, conjunction ∧, and bi-
conditional ↔ are defined in the standard way. In this arti-
cle, we omit curly brackets and parenthesis when it does not
create confusion. For example, we write x instead of {x},
x1, . . . , xn instead of {x1, . . . , xn}, and ϕ → ψ instead of
(ϕ→ ψ).

For any states w,w′ ∈ W and any dataset X ⊆ V , let
w ∼X w′ mean that w ∼x w

′ for each data variable x ∈ X .
In particular, w ∼∅ w′ is true for any states w,w′ ∈ W .
Also, we write f =B g if f(b) = g(b) for each element b of
a set B.

Definition 2. For any state w ∈ W of a game (W, {∼x

}x∈V ,∆,M, π) and any formula ϕ ∈ Φ, satisfaction rela-
tion w  ϕ is defined recursively as follows

1. w  p, if w ∈ π(p),

2. w  X B Y , when for each w′ ∈ W if w ∼X w′, then
w ∼Y w′,

3. w  ¬ϕ, if w 1 ϕ,

4. w  ϕ→ ψ, if w 1 ϕ or w  ψ,

5. w  KXϕ, if w′  ϕ for each w′ ∈ W such that w ∼X

w′,

6. w  SCXϕ, when there is an action profile s ∈ ∆C of
coalition C such that for all states w′, v ∈ W and each
complete action profile δ ∈ ∆A if w ∼X w′, s =C δ,
and (w′, δ, v) ∈M , then v  ϕ.

Observe that K∅ϕ is the universal modality that says
“statement ϕ is true in each state of the game”. If K∅ϕ is
true in each state, then everyone must know it. For this rea-
son, we read K∅ϕ as “statement ϕ is public knowledge”.

The sentence “dataset X informs dataset Y ” could be in-
terpreted in two ways: locally and globally. Under the first
interpretation, the values of variables X in the current state
determine the values of variables Y . Under the second inter-
pretation, the values of X determine the values of Y in each
state. For example, suppose that real values of variables x and
y are such that y = x2 in each state of the game. Then, the
value of x globally determines the value of y, but the value
of y does not globally determine the value of x. However,
the value of y determines the value of x locally in each state
where y = 0. Item 2 of Definition 2, defines the semantics
of expression X BY as local dependency. The global depen-
dency can be captured by the expression K∅(X B Y ).



The data-informed strategies also can be local and global.
For example, supposed that based on the test results X a doc-
tor knows how to adjust a medication. This is a global data-
informed strategy because the doctor would know how to ad-
just medication no matter what the results X are. Of course,
for different test results the strategy (adjustment amount)
would be different. We can specify such global data-informed
strategies as functions that map each X-equivalent class of
states into an action. A local strategy might exists only for
the values of X in the current state. For example, a doctor
might have a strategy to save the life of a cancer patient for
the current values of the test results X . For some other value
of X she might no longer have such a strategy. A local data-
informed strategy is a single action that guarantees result only
in theX-equivalence class of the current state. Item 6 of Def-
inition 2 defines modality SCXϕ as a claim of existence of a
local data-informed strategy. The modality for global strat-
egy could be defined as K∅S

C
Xϕ.

4 Axioms
In addition to propositional tautologies in language Φ, our
logical system contains the following axioms.

1. Truth: KXϕ→ ϕ,
2. Negative Introspection: ¬KXϕ→ KX¬KXϕ,
3. Distributivity: KX(ϕ→ ψ)→ (KXϕ→ KXψ),
4. Reflexivity: X B Y , where Y ⊆ X ,
5. Transitivity: X B Y → (Y B Z → X B Z),
6. Augmentation: X B Y → (X ∪ Z)B (Y ∪ Z),
7. Introspection of Dependency: X B Y → KX(X B Y ),
8. Knowledge Monotonicity: X B Y → (KY ϕ→ KXϕ),
9. Cooperation: SCX(ϕ→ ψ)→ (SDXϕ→ SC∪D

X ψ), where
C ∩D = ∅,

10. Strategic Monotonicity: X B Y → (SCY ϕ→ SCXϕ),

11. Strategic Introspection: SCXϕ→ KXSCXϕ,

12. Knowledge of Unavoidability: KXS∅Y ϕ→ S∅Xϕ,

13. Public Knowledge: K∅ϕ→ SCXϕ.

The Truth, the Negative Introspection, and the Distributiv-
ity axioms are the standard principles from epistemic logic
S5. The Reflexivity, the Transitivity, and the Augmentation
are well-known Armstrong’s axioms for functional depen-
dency [Armstrong, 1974].

The Introspection of Dependency axiom states that if a
dataset X informs a dataset Y , then this is known to any-
one with access to X . The Knowledge Monotonicity axioms
states that if a dataset X informs a dataset Y and dataset Y
informs the knowledge of ϕ, then dataset X also informs
the knowledge of ϕ. The Cooperation axiom is a variation
of Marc Pauly’s axiom introduced in the logic of coalition
power [Pauly, 2001; Pauly, 2002]. It states that if a dataset
X informs strategies (actions profiles) of disjoint coalitions
C and D to achieve ϕ → ψ and ϕ, respectively, then the
dataset also informs a joint strategy for these coalitions to
achieve ψ. The Strategic Monotonicity axiom states that if

a dataset X informs a dataset Y , then X informs each strat-
egy informed by Y . The Strategic Introspection axiom states
that if a datasetX informs a strategy, thenX also informs the
knowledge that it informs the strategy.

To understand the meaning of the Knowledge of Unavoid-
ability axiom, note that statement KXSCY ϕ means that “any-
one who knows X knows that anyone who knows Y knows
a strategy of coalition C to achieve ϕ”. Let us refer to the
knowers of X and Y as Xena and Yeily. Note that while
Yeily knows the strategy, Xena only knows that the strategy
exists and is known to Yeily. Generally speaking, Xena does
not know what the strategy is. One important exception, how-
ever, is when coalition C is empty. In this case, coalition C
has only a single strategy (the unique function from the set
∆C). In such a situation, knowing that a strategy exists is
equivalent to knowing what the strategy is. This is captured
by the Knowledge of Unavoidability axiom. The name of the
axiom comes from the fact that S∅Y ϕ can also be interpreted
as “anyone who knows Y , knows that ϕ is unavoidable”.

By item 3 of Definition 1, each game has at least one ac-
tion. Such an action can be used by the members of any coali-
tion to achieve any statement which is true in each state of the
game. This is captured by the Public Knowledge axiom.

We write ` ϕ and say that formula ϕ ∈ Φ is a theorem of
our system if it is derivable from the above axioms using the
Modus Ponens and the Necessitation inference rule:

ϕ,ϕ→ ψ

ψ

ϕ

KXϕ
.

In addition to unary relation ` ϕ, we also consider a binary
relation F ` ϕ. We write F ` ϕ if formula ϕ ∈ Φ is provable
from the set of formulae F ⊆ Φ and the theorems of our
logical system using only the Modus Ponens inference rule.
We say that set F is inconsistent if there is a formula ϕ ∈ F
such that F ` ϕ and F ` ¬ϕ.

5 Main Results
Theorem 1 (Strong Soundness). For each state w of an ar-
bitrary game, each set of formulae F ⊆ Φ and each formula
ϕ ∈ Φ, if w  f for each formula f ∈ F and F ` ϕ, then
w  ϕ.

Theorem 2 (Strong Completeness). For any set of formulae
F ⊆ Φ and any formula ϕ ∈ Φ, if the set V of data variables
is finite and F 0 ϕ, then there is a state w of a game such
that w  f for each formula f ∈ F and w 1 ϕ.

Theorem 3. If the set V of data variables is infinite, then any
strongly sound logical system L is not strongly complete.

Theorem 4. If ϕ ∈ Φ is a data-finite formula such that 0 ϕ,
then there is a state w of a game such that w 1 ϕ.
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