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Abstract
The paper proposes a data-centred approach to rea-
soning about the interplay between trust and be-
liefs. At its core, is the modality “under the as-
sumption that one dataset is trustworthy, another
dataset informs a belief in a statement”. The main
technical result is a sound and complete logical sys-
tem capturing the properties of this modality.

1 Introduction
With the constant growth of data available to human and ar-
tificial agents, the knowledge and beliefs of these agents are
becoming primarily informed not by their own experiences,
but by the data they have access to and by whether they trust
these data. In the case of algorithmic trading agents, an im-
portant source of the data is news analytics [Mitra et al., 2011;
von Beschwitz et al., 2020].

As an example, consider a situation when a regulatory
agency is about to announce its decision on an application to
approve a new drug developed by a small start-up company.
If the agency announces the approval of the drug the next day,
the stock of the company will rise sharply. If not, the stock
will become essentially worthless.

Suppose that the day before the announcement two widely-
read newspapers, The Post and The Times, publish contradic-
tory predictions. While The Post article p assures its readers
that the drug will be approved, The Times article t insists that
the application will be denied.

Note that anyone who reads article p and trusts it would
conclude that the agency has decided to approve the drug.
In other words, under the assumption that article p is trust-
worthy, it informs the belief that the agency has decided to
approve the drug:

Bp
p(“the drug is approved”). (1)

We will call article p a data variable. In our case, the value
of this data variable is the string representing the content of
the article. In other cases, data variable can have other types
such as numerical or Boolean.

In general, instead of a single data variable, we consider
sets of data variables. We call such sets datasets. For any
datasets X and T , we write BT

Xφ if under the assumption

that dataset T is trustworthy, dataset X informs the belief in
statement φ.

Going back to our example, note that without the assump-
tion that The Post article p is trustworthy, it does not inform
the belief that the drug is approved:

¬Bp(“the drug is approved”). (2)

At the same time, anyone who trusts The Post, but has not
necessarily read the article p, would believe that if article
p says that the drug is approved, then it must be approved.
We say that just the assumption of the trustworthiness of data
variable p informs the belief that if p says the drug is ap-
proved, then it should be true:

Bp(“if p says drug is approved, then it is approved”). (3)

Next, note that anyone who reads The Post’s article (but not
necessarily trusts it!) would conclude that its content, under
the assumption of the trustworthiness, informs the belief that
the drug is approved:

BpB
p
p(“the drug is approved”).

Also, anyone who trusts the article (but not necessarily read
it) would believe that if under the assumption of the trust-
worthiness, its content informs the belief that the drug is ap-
proved, then the drug indeed must be approved:

Bp(Bp
p(“drug is approved”) → “drug is approved”). (4)

Recall from statement (1) that anyone who reads and trusts
article p would belief that the drug is approved. This, how-
ever, does not imply that the start-up company would make a
good investment. Indeed, if all investors agree that the drug
will be approved, then the company’s stock price is already
adjusted and it is no longer undervalued. Thus, even under
the assumption of the trustworthiness of article p, the article
does not inform the believe that the start-up company makes
a good investment:

¬Bp
p(“good time to invest in the start-up company”).

Let us assume that it is well-known that a significant number
of investors trust The Times rather than The Post. Anyone
who reads The Times would conclude that a significant por-
tion of the investors assumes the application is rejected:

BtB
t
t(“the drug is not approved”).



Hence, anyone who reads both articles, but trusts p, would
conclude that the stock of the start-up company is currently
undervalued and it is a good time to invest:

Bp
p,t(“good time to invest in the start-up company”). (5)

Furthermore, anyone who reads both articles, but not neces-
sarily trusts either of them, would conclude that anyone who
reads both articles and trusts p, would believe that the stock
is undervalued:

Bp,tB
p
p,t(“good time to invest in the start-up company”).

In this paper, we formally define trust-based belief modality
BT
Xφ and give its sound and complete axiomatisation.
The rest of the paper is structured as follows. First, we de-

fine trustworthiness models that are used later to give a formal
semantics of our logical system. Then, we introduce the syn-
tax and the formal semantics of the system. In Section 4, we
list and discuss its axioms and the inference rules. We review
related literature on data-informed knowledge, beliefs, and
trust in Section 5. Section 6 contains the proof of the com-
pleteness theorem. Section 7 discusses possible extensions of
our system with Armstrong’s functional dependency relation
and a public announcement modality. Section 8 concludes.

2 Trustworthiness Model
The models that we introduce here are Kripke-style models
with possible worlds. In our introductory example, the set of
possible worlds could be thought of as a set of triples (a, p, t)
where a ∈ {approved, denied} is the agency decision while
p and t is the content of The Post and The Times articles, re-
spectively. A distinctive property of the trustworthiness mod-
els is that for each world w the model specifies the set Tw of
variables which are “trustworthy” in the world w. For exam-
ple, in the world

w1 = (approved, “It’s a strong YES!”, “Agency says no!”)

variable p is trustworthy and t is not. Thus, Tw1
= {p}.

As we will see later, for the semantics of the modality
BT
Xφ, it is not significant what the actual values of data vari-

ables are. It is only important if these values are different or
the same in any two given worlds. Thus, for the sake of sim-
plicity, in our formal definition of a trustworthiness model
below, we do not associate a domain of values with data vari-
ables. Instead, we specify an “indistinguishability” equiva-
lence relation ∼x on the worlds for each data variable x. In-
formally, w ∼x u if data variable x has the same values in
worlds w and u. For example, if world w1 is the one speci-
fied above and

w2 = (denied, “It’s a strong YES!”, “Approved!”),

then w1 ∼p w2 and w1 ̸∼t w2. Note that Tw2 = ∅.
Throughout the rest of the paper, we assume a fixed set of

data variables V . By a dataset we mean any subset of V .

Definition 1. A tuple (W, {∼x}x∈V , {Tw}w∈W , π) is called
a trustworthiness model if

1. W is a (possibly empty) set of worlds,

2. ∼x is an “indistinguishability” equivalence relation on
set W for each x ∈ V ,

3. Tw ⊆ V is a set of data variables that are “trustworthy”
in world w ∈W ,

4. π(p) is a subset of W for each propositional variable p.

3 Syntax and Semantics
In this paper, we assume an arbitrary fixed set V of “data vari-
ables” as well as a fixed set of propositional variables. The
language Φ of our logical system is defined by the grammar:

φ ::= p | ¬φ | φ→ φ | BT
Xφ,

where p is a propositional variable and X,T ⊆ V are
datasets. We read BT

Xφ as “under the assumption of trust-
worthiness of dataset T , dataset X informs the belief in φ”.

We assume that ⊥ is formula ¬(p → p), where p is one
of propositional variables. In addition, for any dataset X and
any worlds w, u ∈ W , we write w ∼X u if w ∼x u for each
data variable x ∈ X .
Definition 2. For any world w ∈ W of any trustworthiness
model (W, {∼x}x∈V , {Tw}w∈W , π) and any formula φ ∈ Φ,
satisfaction relation w ⊩ φ is defined as follows:

1. w ⊩ p if w ∈ π(p),
2. w ⊩ ¬φ if w ⊮ φ,
3. w ⊩ φ→ ψ if w ⊮ φ or w ⊩ ψ,
4. w ⊩ BT

Xφ if u ⊩ φ for each world u ∈ W such that
w ∼X u and T ⊆ Tu.

To understand item 4 of the above definition, let us go
back to our running example and consider worlds w1 and
w2 defined in Section 2. In world w1, article p does not in-
form, without the assumption that this article is trustworthy,
the belief that the drug is approved. This is because among
the worlds indistinguishable by p from w1 there is world w2

where the drug is not approved. Thus, statement (2) is satis-
fied in world w1. If the assumption of trustworthiness of data
p is added, then the worlds like w2 are excluded from the
consideration (p is not trustworthy there). In the remaining
worlds, the drug is approved. Hence, under the assumption
that data p is trustworthy, in world w1, this data informs the
belief that the drug is approved. Thus, statement (1) is also
satisfied in world w1. Observe that statement w ⊩ BT

X⊥ is
true if there is no X-indistinguishable from w world in which
all variables in dataset T are trustworthy.

Note that the expression w ⊩ B∅
Xφ says that statement φ is

true in all worlds X-indistinguishable from world w. In other
words, it says that statement φ is true as long as the values
of variables in dataset X are the same as in world w. In such
a situation, we say that the knowledge of φ is informed by
dataset X in world w. It is easy to see that modality B∅

X
satisfies all standard S5 properties from epistemic logic.

4 Axioms
In addition to propositional tautologies in language Φ, our
Logic of Trust-Based Beliefs contains the axioms listed below.

A1. Truth: B∅
Xφ→ φ,



A2. Distributivity: BT
X(φ→ ψ) → (BT

Xφ→ BT
Xψ),

A3. Negative Introspection of Beliefs: ¬BT
Xφ→ B∅

X¬BT
Xφ,

A4. Monotonicity: BT
Xφ→ BT ′

X′φ, where X ⊆ X ′, T ⊆ T ′,

A5. Trust: BT
X(BT

Y φ→ φ).
To understand the meaning of the Truth and the Negative In-
trospection of Beliefs axioms, recall from Section 3 that B∅

Xφ
is the knowledge modality “dataset X informs the knowledge
of statement φ”. Hence, the Truth axiom is the standard Truth
axiom from the epistemic logic. The Negative Introspection
of Beliefs axiom states that if dataset X does not inform the
belief in φ under the assumption of trustworthiness of dataset
T , then dataset X informs the knowledge of this. Note that
the standard Negative Introspection axiom from the epistemic
logic is a special case of our axiom when set T is empty. The
positive introspection of beliefs also holds. We prove it from
the above axioms in Lemma 1.

The Trust axiom is a general form of statement (4) in the
introduction. Informally, it states that anyone trusting dataset
T believes that any belief based on trust in T must be true.

We write ⊢ φ and say that formula φ is a theorem if φ is
provable from the above axioms using the Modus Ponens and
the Necessitation

φ,φ→ ψ

ψ

φ

BT
Xφ

inference rules. In addition to the unary relation ⊢ φ, we also
consider a binary relation F ⊢ φ. We write F ⊢ φ if formula
φ is derivable from the theorems of our logical system and
the set of additional assumptions F using the Modus Ponens
inference rule only. Note that statement ∅ ⊢ φ is equivalent
to ⊢ φ. We say that a set of formulae F is inconsistent if
F ⊢ φ and F ⊢ ¬φ for some formula φ ∈ Φ.
Lemma 1. ⊢ BT

Xφ→ B∅
XBT

Xφ.

Proof. Formula B∅
X¬BT

Xφ → ¬BT
Xφ is an instance of the

Truth axiom. Thus, ⊢ BT
Xφ → ¬B∅

X¬BT
Xφ, by contra-

position. Hence, taking into account the following instance
¬B∅

X¬BT
Xφ→ B∅

X¬B∅
X¬BT

Xφ of the Negative Introspection
axiom, we have

⊢ BT
Xφ→ B∅

X¬B∅
X¬BT

Xφ. (6)

At the same time, formula ¬BT
Xφ → B∅

X¬BT
Xφ is also

an instance of the Negative Introspection axiom. Thus,
⊢ ¬B∅

X¬BT
Xφ → BT

Xφ by the law of contrapositive in
the propositional logic. Hence, by the Necessitation infer-
ence rule, ⊢ B∅

X(¬B∅
X¬BT

Xφ → BT
Xφ). Thus, by the

Distributivity axiom and the Modus Ponens inference rule,
⊢ B∅

X¬B∅
X¬BT

Xφ → B∅
XBT

Xφ. The latter, together with
statement (6), implies the statement of the lemma by propo-
sitional reasoning.

The proofs of the next two results are omitted due to the
space constraint.
Theorem 1 (strong soundness). For any world w of a trust-
worthiness model, any set of formulae F ⊆ Φ, and any for-
mula φ ∈ Φ, if w ⊩ f for each formula f ∈ F and F ⊢ φ,
then w ⊩ φ.
Lemma 2. If φ1, .., φn ⊢ ψ, then BT

Xφ1, ..,B
T
Xφn ⊢ BT

Xψ.

5 Literature Review
The modality BT

Xφ is closely connected to counterfactual
modality ψ □→ φ [Lewis, 1973], also known as conditional
belief modality. Informally, ψ □→ φ states that the assump-
tion ofψ leads to a belief inφ. Using counterfactual modality,
statement (1) from the introduction can be written as

“The Post article is true” □→ “the drug is approved”.

The latter statement, essentially, says that under the assump-
tion of trustworthiness of The Post article, the knowledge of
the content of this article informs the belief that the drug will
be approved. The major advantage of the modality BT

Xφ,
that we propose, is the ability to separate what is trustwor-
thy from what is known. Without this separation, one would
not be able to express beliefs that are based on pure trust of
the source without the knowledge of the content, as in state-
ments (3) and (4). One also would not be able to express
beliefs based on a mix of trusted and untrusted sources as in
statement (5).

Lewis [1973] used sphere semantics for modality □→.
This semantics has been later generalised to neighbourhood
semantics [Girlando et al., 2016; Girlando et al., 2019;
van Eijck and Li, 2017]. Another type of semantics for
modality □→ is plausibility semantics [Board, 2004; Baltag
and Smets, 2006; Baltag and Smets, 2008; Boutilier, 1994;
Friedman and Halpern, 1997; Friedman and Halpern, 1999].
Trustworthiness models are original to the current paper. It
is interesting to point out that, properly modified, axioms of
our logical system are valid for modality □→ under sphere
and plausibility semantics. For example, our Trust axiom is
sound in the form: ψ□→((ψ□→φ) → φ).

In Section 3, we noticed that w ⊩ BT
X⊥ is true if there is

no X-indistinguishable from w world in which all variables
in dataset T are trustworthy. This corresponds to statement
ψ□→⊥ being true if formula ψ is not satisfied in any worlds.

Recall from our discussion in Section 3 that statement
B∅
Xφ captures data-informed knowledge. This modality is es-

sentially the same as “dependence” modality DXφ recently
introduced by Baltag and van Benthem [2021]. However, due
to slight difference in semantics, their modalityDXφ in addi-
tion to S5 properties also satisfies axiom φ → DXφ. Under
the semantics of Definition 2, property φ → B∅

Xφ is not uni-
versally true.

Many other logical systems for reasoning about values of
data variables have been proposed before. Armstrong consid-
ered relationX▷Y that means “the values of the variables in
set X functionally determine the values of the variables in set
Y ” [1974]. His axioms became known in database literature
as Armstrong’s axioms [Garcia-Molina et al., 2009, p. 81].
Baltag proposed a logical system for expression X ▷a Y ,
that stands for “agent a knows how to compute dataset Y
based on dataset X” [2016]. More and Naumov gave ax-
iomatisation of “no-information-flow” relation [2009], pro-
posed in [Sutherland, 1986]. Modality “public inspection” of
a dataset was introduced in [van Eijck et al., 2017]. Wang and
Fan gave axiomatisation of “conditionally knowing value”
modality [2014].

Multiple logical systems capturing properties of trust have
been proposed. Castelfranchi and Falcone suggested to treat



trust as a mental state and define it through beliefs. Very
roughly, I trust you to do something if I belief that you
will do it [1998]. This approach has been further developed
in [Herzig et al., 2010]. Tagliaferri and Aldini introduced
trust as a modality whose semantics is defined through nu-
merical trustworthiness threshold functions [2019]. They did
not consider a connection between trust and beliefs. Prim-
iero proposed a trust logic for reasoning about communica-
tions [2020].

The closest works to ours are [Liau, 2003] and [Perrotin
et al., 2019]. In [Liau, 2003], the author introduced a logi-
cal system containing modalities Baφ (agent a beliefs in φ),
Ia,bφ (agent a acquires information φ from b), and Ta,bφ
(agent a trusts the judgement of b on the truth of φ). The
semantics of modalities B and I are Kripke-style, while the
one for modality T is neighbourhood-based. Certain connec-
tions between these semantics are assumed. [Perrotin et al.,
2019] proposed a logical system that describes the interplay
between beliefs, trust, and public group announcements. In
their system, trust is semantically modelled through set Tw

a
of all agents whom agent a trusts in state w. This set re-
sembles set Tw in our semantics. In their semantics, beliefs
are defined using belief bases. As public announcements are
made, the set of agents Tw

a to whom agent a trusts is updated
based on the agent’s belief base. Thus, in their system, beliefs
define trust, while in ours trust defines beliefs. The syntax of
their system includes trust propositional variable Ta,b (agent
a trusts agent b) and belief modality Baφ (agent a beliefs
in statement φ). The only axiom of their system that includes
both trust propositional variable and belief modality is the ax-
iom Ta,b → (BaBbφ → Baφ). It is interesting to note that
this axiom could be roughly translated into our language as
BT
XBT

Y φ → BT
Xφ. The last statement is provable in our sys-

tem through a combination of the Trust and the Distributivity
axioms. Unlike our work, [Perrotin et al., 2019] and [Liau,
2003] do not consider data-informed beliefs.

6 Completeness
In this section, we prove the completeness of our system.

6.1 Canonical Model
As usual, at the core of the proof of the completeness is the
construction of a canonical model. The goal of this section
is to define canonical trustworthiness model M(T0, F0) =
(W, {∼x}x∈V , {Tw}w∈W , π) for any dataset T0 ⊆ V and
any maximal consistent set of formula F0 ⊆ Φ.
Definition 3. Set of worlds W is the set of all sequences
T0, F0, X1, T1, F1, . . . , Xn, Tn, Fn such that n ≥ 0 and, for
each i where 0 ≤ i ≤ n,

1. Xi, Ti ⊆ V are datasets,
2. Fi is a maximal consistent set of formulae such that

(a) ψ ∈ Fi for each formula B∅
Xi
ψ ∈ Fi−1, if i > 0,

(b) BTi

Y φ→ φ ∈ Fi for each dataset Y ⊆ V and each
formula φ ∈ Φ.

For any worlds w′, w ∈W such that
w′ = T0, F0, . . . , Xn−1, Tn−1, Fn−1

w = T0, F0, . . . , Xn−1, Tn−1, Fn−1, Xn, Tn, Fn

we say that worlds w′ and w are adjacent. The adjacency
relation defines a tree structure on set W . We say that the
edge between nodes w′ and w of this tree is labelled with all
variables in dataset Xn and that the node w is labelled with
the pair Tn, Fn. By T (w) and F (w) we mean sets Tn and Fn

respectively.

T0,F0

T1,F1 T2,F2

T3,F3T4,F4

X1 X2

X4 X3

Figure 1: Fragment of tree W .

It will be convenient to visualise tree W as shown in Fig-
ure 1. In this figure, the world T0, F0, X2, T2, F2, X4, T4, F4

is adjacent to the world T0, F0, X2, T2, F2. The edge between
these two worlds is labelled by all variables in dataset X4.
Definition 4. For any worlds u,w ∈ W and any data vari-
able x ∈ V , let u ∼x w if every edge along the unique simple
path between vertices u and w is labelled with variable x.

Lemma 3. Relation ∼x is an equivalence relation on set W
for each data variable x ∈ V .

Definition 5. Tw = T (w).

Definition 6. π(p) = {w ∈W | p ∈ F (w)}.

This concludes the definition of the canonical trustworthi-
ness model M(F0) = (W, {∼x}x∈V , {Tw}w∈W , π).

6.2 Properties of the Canonical Model
As common in modal logic, at the core of the proof of the
completeness is a truth lemma. In our case, this is Lemma 7.
Lemma 5 and Lemma 6 are used in the induction step of the
proof of the truth lemma. Lemma 4 below is an auxiliary
result used in the proof of Lemma 5.
Lemma 4. For any formula BT

Y φ ∈ Φ and any worlds

w′ = T0, F0, . . . , Xn−1, Tn−1, Fn−1

w = T0, F0, . . . , Xn−1, Tn−1, Fn−1, Xn, Tn, Fn

if Y ⊆ Xn, then BT
Y φ ∈ F (w′) iff BT

Y φ ∈ F (w).

Proof. (⇒) : Suppose BT
Y φ ∈ F (w′). Thus, BT

Y φ ∈ Fn−1.
Then, by Lemma 1 and the Modus Ponens inference rule,
Fn−1 ⊢ B∅

Y B
T
Y φ. Hence, Fn−1 ⊢ B∅

Xn
BT
Y φ by the assump-

tion Y ⊆ Xn of the lemma, the Monotonicity axiom, and the
Modus Ponens inference rule. Then, B∅

Xn
BT
Y φ ∈ Fn−1 be-

cause Fn−1 is a maximal consistent set. Thus, BT
Y φ ∈ Fn by

item 2(a) of Definition 3. Therefore, BT
Y φ ∈ F (w).

(⇐) : Suppose BT
Y φ /∈ F (w′). Then, BT

Y φ /∈ Fn−1. Thus,
¬BT

Y φ ∈ Fn−1 because Fn−1 is a maximal consistent set
of formulae. Hence, Fn−1 ⊢ B∅

Y ¬BT
Y φ by the Negative

Introspection axiom and the Modus Ponens inference rule.
Thus, Fn−1 ⊢ B∅

Xn
¬BT

Y φ by the assumption Y ⊆ Xn of



the lemma, the Monotonicity axiom, and the Modus Ponens
inference rule. Then, again because set Fn−1 is maximal,
B∅
Xn

¬BT
Y φ ∈ Fn−1. Thus, ¬BT

Xn
φ ∈ Fn by item 2(a) of

Definition 3. Hence, BT
Y φ /∈ Fn, because set Fn is consis-

tent. Therefore, BT
Y φ /∈ F (w).

Lemma 5. For any worlds w, u ∈ W and any formula
BT
Xφ ∈ F (w), if w ∼X u and T ⊆ Tu, then φ ∈ F (u).

Proof. By Definition 4, the assumption w ∼X u implies that
each edge along the unique path between nodes w and u is la-
belled with each variable in dataset X . Then, the assumption
BT
Xφ ∈ F (w) implies BT

Xφ ∈ F (u) by applying Lemma 4 to
each edge along this path. Note that the assumption T ⊆ Tu
of the lemma implies that T ⊆ T (u) by Definition 5. Thus,
F (u) ⊢ B

T (u)
X φ by the Monotonicity axiom and the Modus

Ponens inference rule. Hence, F (u) ⊢ φ by item 2(b) of Def-
inition 3 and the Modus Ponens inference rule. Therefore,
φ ∈ F (u) because the set F (u) is maximal.

Lemma 6. For any w ∈ W and any formula BT
Xφ /∈ F (w),

there exists a world u ∈ W such that w ∼X u, T ⊆ Tu, and
φ /∈ F (u).

Proof. Consider the set of formulae

G = {¬φ} ∪ {ψ | B∅
Xψ ∈ F (w)}

∪{BT
Y χ→ χ | Y ⊆ V, χ ∈ Φ} (7)

Claim 1. Set G is consistent.

PROOF OF CLAIM. Assume the opposite. Thus, there are
formulae χ1, . . . , χn ∈ Φ, datasets Y1, . . . , Yn ⊆ V , and
formulae

B∅
Xψ1, . . . ,B

∅
Xψm ∈ F (w) (8)

such that

BT
Y1
χ1 → χ1, . . . ,B

T
Yn
χn → χn, ψ1, . . . , ψm ⊢ φ.

Hence, by Lemma 2,

BT
X(BT

Y1
χ1 → χ1), . . . ,B

T
X(BT

Yn
χn → χn),

BT
Xψ1, . . . ,B

T
Xψm ⊢ BT

Xφ.

Then, BT
Xψ1, . . . ,B

T
Xψm ⊢ BT

Xφ by the Trust axiom
applied n times. Thus, B∅

Xψ1, . . . ,B
∅
Xψm ⊢ BT

Xφ by the
Monotonicity axiom and the Modus Ponens inference rule
applied m times. Hence, F (w) ⊢ BT

Xφ due to statement (8).
Then, BT

Xφ ∈ F (w) because the set F (w) is maximal, which
contradict the assumption BT

Xφ /∈ F (w) of the lemma. □

Let G′ be any maximal consistent extension of set G. Sup-
pose that w = T0, F0, . . . , Xn, Tn, Fn. Consider sequence

u = T0, F0, . . . , Xn, Tn, Fn, X, T,G
′. (9)

Note that u ∈W by Definition 3, equation (7), and the choice
of setG′ as an extension of setG. Also, observe thatw ∼X u
by Definition 4 and equation (9). In addition, T = T (u) = Tu
by equation (9) and Definition 5. Finally, ¬φ ∈ G ⊆ G′ =
F (u) by equation (7), the choice of G′ as an extension of G,
and equation (9).Therefore, φ /∈ F (u) because the set F (u)
is consistent. This concludes the proof of the lemma.

Lemma 7. w ⊩ φ iff φ ∈ F (w), for any world w ∈ W and
any formula φ ∈ Φ.

Proof. We prove the lemma by induction on structural com-
plexity of formula φ. If formula φ is a propositional variable,
then the statement of the lemma follows from Definition 6
and item 1 of Definition 2.

If formula φ is a negation or an implication, then the state-
ment of the lemma follows from the induction hypothesis,
items 2 and 3 of Definition 2 and the maximality and consis-
tency of set F (w) in the standard way.

Let us now suppose that formula φ has the form BT
Xψ.

(⇒) : If BT
Xψ /∈ F (w) then, by Lemma 6, there exists a world

u ∈ W such that w ∼X u, T ⊆ Tu, and ψ /∈ F (u). Thus,
u ⊮ ψ by the induction hypothesis. Therefore, w ⊮ BT

Xψ by
item 4 of Definition 2.
(⇐) : Consider any world u such that w ∼X u and T ⊆ Tu.
By item 4 of Definition 2, it suffices to show that u ⊩ ψ.
By Lemma 5, the assumptions BT

Xψ ∈ F (w), w ∼X u, and
T ⊆ Tu imply ψ ∈ F (u). Therefore, u ⊩ ψ by the induction
hypothesis.

6.3 Completeness: Final Step
Theorem 2 (strong completeness). For any set of formulae
F ⊆ Φ and any formula φ ∈ Φ, if F ⊬ φ, then there is a
world w of a trustworthiness model such that w ⊩ f for each
formula f ∈ F and w ⊮ φ.

Proof. The assumption F ⊬ φ implies that the set F ∪ {¬φ}
is consistent. Let F0 be any maximal consistent extension of
this set. Consider the canonical model M(∅, F0).

First, we show that the sequence ∅, F0 is a world of this
canonical model. By Definition 3, it suffices to show that
B∅
Y ψ → ψ ∈ F0 for each dataset Y ⊆ V and each formula

ψ ∈ Φ. The last statement is true by the Truth axiom and
because set F0 is maximal.

Next, note that φ /∈ F0 because set F0 is consistent and
¬φ ∈ F0. Then, by Lemma 7 and because F ⊆ F0, it follows
that ∅, F0 ⊩ f for each formula f ∈ F and ∅, F0 ⊮ φ.

7 Future Work
By focusing on data instead of agents, we are able to signif-
icantly simplify the settings of the previous works on beliefs
and trust. This creates an opportunity for extensions of the
proposed logical system in the future.

7.1 Functional Dependency
One of such extension is the incorporation of Armstrong’s
functional dependency relation X ▷ Y [Armstrong, 1974]
into the logic. Informally, X ▷ Y means that the values of
the variables in dataset X inform (or functionally determine)
the values of the variables in dataset Y . The term “inform”
can be interpreted in two ways: globally (in each world) and
locally (in the current world). By X ▷ Y we denote the local
interpretation. The global interpretation could be expressed
as B∅

∅(X ▷ Y ). The formal definition of relation X ▷ Y is
below.



Definition 7. For any worldw ∈W of trustworthiness model
(W, {∼x}x∈V , {Tw}w∈W , π) and any datasets X,Y ⊆ V ,
let w ⊩ X▷Y when for each world u ∈W , if w ∼X u, then
w ∼Y u.

If the language of our logical system is extended with the
primitive proposition X ▷Y and Definition 7 is incorporated
into Definition 2, then the following additional axioms are
sound with respect to the modified semantics:

A6. Reflexivity: X ▷ Y , where Y ⊆ X ,

A7. Transitivity: X ▷ Y → (Y ▷ Z → X ▷ Z),

A8. Augmentation: X ▷ Y → X ∪ Z ▷ Y ∪ Z,

A9. Monotonicity: X ▷ Y → (BT
Y φ→ BT

Xφ).

The first three of these axioms are known in database
theory as Armstrong’s axioms [Garcia-Molina et al., 2009,
p. 81]. The complete axiomatisation of the interplay between
relation X ▷ Y and the data-informed belief modality BT

Xφ
remains an open question.

7.2 Public Announcements
Another interesting possible extension of our logic is by a
public announcement modality. Given the data focus of our
logical system, it makes sense to consider public announce-
ment of values of datasets rather than of true formulae. Such
modality has been first introduced in [van Eijck et al., 2017]
under name “public inspection”. We use notation [X]φ for
modality “formula φ holds after the values of all variables in
dataset X are publicly announced”. To formally define the
semantics of this modality, we modify satisfaction relation
from a binary relation w ⊩ φ to a ternary relation w,U ⊩ φ.
It reads “formula φ is satisfied in world w after a public an-
nouncement of the values of all variables in dataset U”.

To change from binary form of relation ⊩ to the ternary
one, we first need to slightly modify Definition 1. Namely,
in item 4 we will assume that π(p) is a set of pairs (w,U),
where w ∈W is a world and U ⊆ V is a dataset. Informally,
(w,U) ∈ π(p) if propositional variable p holds in world w
after a public announcement of the values of all variables in
dataset U . Then, Definition 2 could be modified as follows to
define the ternary form of the satisfaction relation.

Definition 8. For any world w ∈ W of any trustworthiness
model (W, {∼x}x∈V , {Tw}w∈W , π), any dataset U ⊆ V ,
and any formula φ ∈ Φ, satisfaction relation w,U ⊩ φ is
defined as follows:

1. w,U ⊩ p if (w,U) ∈ π(p),

2. w,U ⊩ ¬φ if w,U ⊮ φ,

3. w,U ⊩ X ▷ Y when for each v ∈ W , if w ∼X∪U v,
then w ∼Y v,

4. w,U ⊩ φ→ ψ if w,U ⊮ φ or w,U ⊩ ψ,

5. w,U ⊩ BT
Xφ if v, U ⊩ φ for each world v ∈ W such

that v ∼X∪U u and T ⊆ Tu,

6. w,U ⊩ [X]φ if w,U ∪X ⊩ φ,

In the classical logic of public announcements it is assumed
that only true formulae can be announced [van Ditmarsch et

al., 2007, Chapter 4]. Similar, in the logic of public inspec-
tions, the “true” values of the variables are announced [van
Eijck et al., 2017]. The same is technically true in our se-
mantics given above. However, in our setting the announced
values do not have to be trustworthy. For example, a news-
paper prediction could be publicly announced even if the pre-
diction is wrong. Such announcement is “true” because the
newspaper indeed made such a prediction, but this data is not
trustworthy because the prediction itself is wrong. The abil-
ity to reason about such announcements is a unique feature of
our approach that distinguishes it from the previous works.

The following addition axioms capture the interplay be-
tween data-informed beliefs, functional dependency, and
public announcements:

A10. Distributivity: [X](φ→ ψ) → ([X]φ→ [X]ψ),

A11. Combination: [X][Y ]φ↔ [X ∪ Y ]φ,

A12. Duality: ¬[X]φ↔ [X]¬φ,

A13. Introspection of Dependency: X ▷ Y → BT
X(X ▷ Y ),

A14. Perfect Recall: BT
X [Y ]φ→ [Y ]BT

Xφ,

A15. Public Knowledge: [X](BT
X∪Y φ→ BT

Y φ),

A16. Prior Belief: [X]BT
Y φ→ BT

X∪Y [X]φ,

A17. Partial Announcement: (X ∪ Y )▷ Z ↔ [X](Y ▷ Z),

A18. Empty Announcement: φ→ [∅]φ.

The complete axiomatisation of these properties (or even the
properties of modalities BT

X and [X] without the functional
dependency) is another question that we leave for the future.

8 Conclusion
The existing literature on the logics of trust assumes that trust
is a relation between agents. In this paper, we proposed to
study trustworthiness as a property of data. We introduced
trust-based beliefs that are formed by the interplay between
the known data on one hand and the trusted data on the other.
We proposed a sound and complete logical system describing
such beliefs. We also discussed possible extensions of this
system with Armstrong’s function dependency relation and
public announcement modality.
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