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Abstract

The paper studies preferences of agents about other
agents in a social network. It proposes a logical
system that captures the properties of such pref-
erences, called “likes”. The system can express
nested constructions “agent likes humbled people”,
“agent likes those who like humbled people”, etc.
The main technical results are a model checking al-
gorithm and a sound, complete, and decidable ax-
iomatization of the proposed system.

1 Introduction
INVESTIGATOR: Have your student ever advocated the

overthrow of the United States Government?

As a young faculty who just started to teach in the United
States, the second author of this paper did not expect this
question. He instantly understood that answering “yes”
would jeopardize the student’s chances to get security clear-
ance required for the student’s job with the US Government.
However, he did not know that answering “yes” to this ques-
tion and expressing a sympathy for the student could disqual-
ify the author from ever working for the US Department of
Defense. Indeed, under US law, “. . . sympathy with persons
or organizations that advocate the overthrow of the United
States Government”1 is a disqualifying factor for a security
clearance at the US Department of Defense.

In this paper we propose a logical system for reasoning
about preferences (or “likes”) of agents about other agents
which is based on egocentric logic [Prior, 1968]. The egocen-
tric approach has also been used in [Grove and Halpern, 1991;
Grove and Halpern, 1993; Grove, 1995; Seligman et al.,
2013; Epstein and Naumov, 2021]. In an egocentric logic,
the statements capture properties of the agents. As a result,
the satisfaction is a relation between an agent and a formula:

the student ⊩ advocated the overthrow.

In general, we write a ⊩ φ if property φ is true about agent a.
In this paper, we propose modality L (“likes those who”) that
captures agents’ preferences about other agents. For example,

1https://www.law.cornell.edu/cfr/text/32/147.3

it is clear from the opening example that the investigator pre-
ferred job applicants who have not advocated the overthrow
of the US Government:

the investigator ⊩ L¬(“advocated the overthrow”).

In general, we write a ⊩ Lφ if agent a likes (prefers) any
agent with property φ to an agent without property φ.

At this point, placement of an agent on the left-hand-side
of the relation ⊩ seems to be not very justified. The reason for
doing this appears clear only when one starts nesting modal-
ities. Indeed, because the agent is on the left-hand-side of ⊩,
formula Lφ captures a property of an agent, just like formula
φ does. As a result, it can be nested. Statement LLφ means
“likes those who like φ” and statement L¬Lφ means “likes
those who do not like φ”. For example,

the investigator ⊩ L¬L(“advocated the overthrow”). (1)

means that the investigator likes those who do not sym-
pathise with the people advocating the overthrow of the
US Government. Note that statements like the one above
can not be expressed in traditional multiagent modal lan-
guage where the agent is placed in subscript. This is
because in such a language, the operator La in state-
ment La(“advocated the overthrow”) takes a statement about
agents as an argument and returns a statement about the world
(“agent a likes those who advocate the overthrow”) as the
value. Such operators cannot be nested.

Statement (1) illustrates the capability of an egocentric
logic, but it does not capture correctly the security clearance
requirements in the United States. Indeed, imagine a bit un-
usual situation when a job candidate does not sympathise with
the people advocating the overthrow of the US Government,
but yet advocates for this herself. Cited above Title 32 – Na-
tional Defence of US code of federal regulations disqualifies
such person from being employed by the Department of De-
fense as well. Thus,

the investigator ⊩ L(¬(“advocated the overthrow”) ∧
¬L(“advocated the overthrow”)).

It is interesting to note that the above regulation does not
disqualify those who sympathise with the sympathisers:

the investigator ⊮ L(¬(“advocated the overthrow”) ∧
¬L(“advocated the overthrow”) ∧
¬LL(“advocated the overthrow”)).

https://www.law.cornell.edu/cfr/text/32/147.3


In this paper, we propose a formal semantics for modality
L in the egocentric setting, describe a model checking algo-
rithm for formulae that use this modality, and give a sound,
complete, and decidable axiomatization of the properties of
this modality. To illustrate the capability of our logical sys-
tem, we add to it “for all friends” modality F as well as con-
stants humbled η and egotistic ε. We assume that friends do
not have opposite preferences, that humbled agents do not
think that they are better than their friends, and that egotistic
people do not think that they are worse than their friends.

The first logical system for reasoning about preferences,
the logic of ‘better’, was proposed by Halldén [1957]. It cap-
tures the properties of the binary modality “statement p is
better than q”. Similar logical systems have been proposed
in [Von Wright, 1963; Doyle et al., 1991]. In these systems
one can define “likes” modality Lφ to mean that “statement φ
is better than statement ¬φ”. Lang, van der Torre, and Wey-
dert considered a conditional version L(φ |ψ) of this modal-
ity, which stands for “statement φ is preferred over ¬φ as-
suming that ψ is true” [2002]. Van Benthem, Girard, and Roy
proposed a logical system for a related modality “statement
φ holds in all worlds better than current” [2009]. The same
modality is also investigated in [Liu, 2011; Christoff et al.,
2021]. Lorini and Schwarzentruber proposed to define desir-
ability without using a preference relation. They say that a
statement is desirable if it is true in all worlds indistinguish-
able from the current world that are labeled as “good” [2011].
Unlike us, none of these works used the egocentric approach.
As a result, they cannot express statements “like those who
like”, “like those who do not like”, etc.

The paper is structured as follows. First, in sections 2
through 4 we propose the formal semantics of modalities L
and F as well as constants η and ε and illustrate them with
two examples. Second, in Section 5, we describe a model
checking algorithm for our logical system and analyse its
complexity. Third, in Section 6, we give a sound, complete,
and decidable logical system that captures the interplay be-
tween modalities L, F and constants η, ε. The proofs of the
soundness and the completeness are omitted due to the space
constraint.

2 Social Network
In this section, we introduce the notion of a social network
that serves as a foundation for the semantics of our logic. In
the paper, we assume a fixed set of propositional variables P .

Definition 1. A tuple (A, {≺a}a∈A,F ,H, E , π) is called a
social network if

1. A is a (possibly empty) finite set of “agents”,

2. ≺a is a strict partial order “preference” relation on A,
for each agent a ∈ A,

3. F(a) ⊆ A is a set for any agent a ∈ A, called a “circle
of friends”, such that

(i). a ∈ F(a) for all agents a ∈ A,
(ii). if b ≺a c, then c ⊀f b, for all agents a, b, c ∈ A

and each agent f ∈ F(a),

4. H ⊆ A is a set of “humbled” agents; it will be assumed
that f ⊀h h for any humbled agent h ∈ H and any
agent f ∈ F(h),

5. E ⊆ A is a set of “egotistic” agents; it will be assumed
that e ⊀e f for any egotistic agent e ∈ E and any agent
f ∈ F(e),

6. π(p) is a subset of A for each variable p ∈ P .

Item 3(i) of the above definition states that each agent is
her own friend. We make this assumption to simplify one of
the axioms of our logical system. Our results in this paper
can be easily adjusted if this assumption is removed. Item
3(ii) states that friends cannot have opposite preferences. The
similarity of preferences between friends has been observed
in psychology [Selfhout et al., 2009] and it is the underlying
assumption of the balance theory [Harary, 1953]. Note that
we do not assume that friendship is symmetric: if a ∈ F(b),
then it is not necessarily that b ∈ F(a). Items 4 and 5 capture
our assumptions that humbled agents do not think that they
are better than their friends and that egotistic agents do not
think that they are worse than their friends.

In this paper, we primarily use terms “friend”, “humbled”,
and “egotistic” to show-off the expressive power of our lan-
guage. We do not imply that items 3, 4, and 5 capture the full
depth of human friendship or the notions of humbleness and
egotism.

Note that propositional variables, just like all formulae in
our language, represent noun-free fragments of propositions
such as “is humbled” or “is rich”. Prior calls them subject-
less predicates [1968]. Grove and Halpern use term relative
propositions because they are relative to an agent [Grove and
Halpern, 1991; Grove and Halpern, 1993; Grove, 1995]. To
reflect this, item 6 of Definition 1 specifies the valuation π(p)
of a proposition variable p as a set of agents. Informally, these
are the agents for which propositional variable p is true.

Let us now turn to an example of a social network. Re-
cently, a lot has been said about polarisation of opinions in
the society. From Brexit debates [Del Vicario et al., 2017],
ethnic integration in Netherlands [Oosterwaal and Torenvlied,
2010], to politics in the US [Sides and Hopkins, 2015], it has
been observed that the people split into two groups that do not
interact and do not value the opinions of each other. In real-
ity, there is nothing new about such split. The same situation
existed in 18th century England, as highlighted in political
satire book Gulliver’s Travels [Swift, 1995]. Following Swift,
we capture such polarisation in Lilliput’s Social Network de-
picted in Figure 1. All agents in the network are divided into
big endians and little endians. We assume that there is at least
one agent in each group. Directed edges labeled with a group
of agents represent the preferences of all agents in the group.
Thus, each big endian prefers each big endian over each little
endian and each little endian prefers each little endian over
each big endian. We also assume that each agent a in this
setting has a set of friends F(a), not depicted in the figure.

Proposition 1. A little endian cannot be a friend of a big
endian. A big endian cannot be a friend of a little endian.

Proof. Suppose that there is a little endian l and a big endian
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Figure 1: Lilliput’s Social Network.

b such that l ∈ F(b). Thus, l ≺b b and

b ≺l l, (2)

see Figure 1. Statement l ≺b b implies that b ⊀l l by item
3(ii) of Definition 1 and the assumption l ∈ F(b), which
contradicts to statement (2). The proof of the other statement
is similar.

Although the Lilliput’s Social Network is based on a fic-
tional book, castes define a similar social structure in India.
There, similar to our claim in Proposition 1, “caste was and
is a defining factor in friendships” [Dhanaraj, 2016]. In the
United States, about forty percent of registered voters do not
have a single close friend who supports the other major party
candidate [Dunn, 2020].

3 Syntax and Semantics
The language Φ of our system is defined by the grammar:

φ := η | ε | p | ¬φ | φ→ φ | Fφ | Lφ.

We read η as “is humbled”, ε as “is egotistic”, F as “for all
friends”, and L as “likes those who”. We assume that F is an
abbreviation for ¬F¬. We read F as “has a friend who”. We
assume that disjunction ∨, conjunction ∧, and biconditional
↔ are defined in our language in the standard way.

Next, we define the semantics of our logical system.
Definition 2. For any agent a ∈ A of a social network
(A, {≺a}a∈A,F ,H, E , π) and any formula φ ∈ Φ, the satis-
faction relation a ⊩ φ is defined recursively as follows.

1. a ⊩ η, if a ∈ H,

2. a ⊩ ε, if a ∈ E ,

3. a ⊩ p, if a ∈ π(p),

4. a ⊩ ¬φ, if a ⊮ φ,

5. a ⊩ φ→ ψ, if a ⊮ φ or a ⊩ ψ,

6. a ⊩ Fφ, if f ⊩ φ for all agents f ∈ F(a),

7. a ⊩ Lφ, when for all agents b, c ∈ A, if b ⊮ φ and
c ⊩ φ, then b ≺a c.

Some of the existing works on preferences are based on
ceteris paribus principle [Von Wright, 1963]. If this principle
is applied to modality “like”, then one would say that an agent
a likes φ if she prefers agents for whom φ is true to those for
who φ is not true, everything else being equal. Capturing

“everything else being equal” assumption semantically is a
non-trivial task. One of possible ways to do it is proposed
in [Van Benthem et al., 2009]. In this paper, we do not use
ceteris paribus principle. Item 7 of the above definition states
that an agent a likes φ if she prefers each agent for whom φ
is true to each agent for whom φ is not true.

We use Aφ as an abbreviation for formula φ ∧ Lφ ∧ L¬φ.
Because of the next lemma, we read A as “for all agents”.

Lemma 1. a ⊩ Aφ iff b ⊩ φ for all agents b ∈ A.

Proof. (⇒) : Suppose that there is an agent b ∈ A such that
b ⊮ φ. Note that the assumption a ⊩ Aφ of the lemma im-
plies that a ⊩ φ and a ⊩ Lφ. Then, by item 7 of Definition 2,
the assumption b ⊮ φ implies that b ≺a a.

At the same time, the assumption b ⊮ φ implies b ⊩ ¬φ
by item 4 of Definition 2. Note that the assumption a ⊩ Aφ
of the lemma also implies that a ⊩ φ and a ⊩ L¬φ. Then,
a ≺a b again by item 7 of Definition 2.

Finally, note that statements b ≺a a and a ≺a b are incon-
sistent because relation ≺a is a strict partial order by item 2
of Definition 1.
(⇐) : Suppose that a ⊮ φ ∧ Lφ ∧ L¬φ. Thus, one of the
following cases takes place.
Case I: a ⊮ φ. Then, there is an agent b such that b ⊮ φ.
Case II: a ⊮ Lφ. Hence, by item 7 of Definition 2, there are
agents b, c ∈ A such that b ⊮ φ, c ⊩ φ, and b ⊀a c. So, there
is an agent b such that b ⊮ φ.
Case III: a ⊮ L¬φ. Thus, again by item 7 of Definition 2,
there are agents b, c ∈ A such that b ⊮ ¬φ, c ⊩ ¬φ, and
b ⊀a c. Therefore, c ⊮ φ by item 4 of Definition 2.

The lemma below follows from item 7 of Definition 2.

Lemma 2. For any social network, if a ⊩ φ ↔ ψ for each
agent a ∈ A, then a ⊩ Lφ↔ Lψ for each agent a ∈ A.

4 Examples
In this section, we illustrate the formal semantics of modali-
ties L, F given in Definition 2.

4.1 Lilliput’s Social Network
First, let us return to the Lilliput’s Social Network from Fig-
ure 1 and consider several statements with modality L. The
proposition below shows that an agent likes little endians if
and only if she herself is a little endian.

Proposition 2. a ⊩ L(“is a little endian”) iff agent a is a
little endian.

The assumption on page 2 that the set of little endians is
nonempty is important for Proposition 2. Indeed, by item 7
of Definition 2, the statement a ⊩ L(“is a little endian”) is
vacuously true for any agent a if the set of little endians is
empty.

The next proposition states that an agent likes big endians
if and only if she herself is a big endian.

Proposition 3. a ⊩ L(“is a big endian”) iff agent a is a big
endian.



The proposition below states that an agent likes those who
like little endians if and only if she herself is a little endian.

Proposition 4. a ⊩ LL(“is a little endian”) iff agent a is a
little endian.

Finally, the proposition states that an agent likes those who
do not like little endians if and only if she herself is a big
endian.

Proposition 5. a ⊩ L¬L(“is a little endian”) iff agent a is a
big endian.

4.2 The World According to Steve Jobs
This example originates from the quote

“Steve Jobs has a saying thatA players hireA play-
ers; B players hire C players; and C players hireD
players.” [Kawasaki, 2004, p. 101]

We capture this quote through the diagram depicted in Fig-
ure 2. Here all agents are partitioned into groups A, B, C,
and D. As with our previous example, we assume that each
group is not empty. The hiring preference relation of each
group is depicted in the diagram using directed edges.

A

D

C

B

A

A

A
B

B

B

C
C

C

Figure 2: The World According to Steve Jobs.

The following propositions about A-, B-, C-, and D-
payers are true in the context of this example.

Proposition 6. A-players can not be friends with B-players
or C-players. B-players cannot be friends with C-players.

Proof. To prove that A-players can not be friends with B-
players, consider any A-player a and any B-player b. Recall
that we assume that each group contains at least one player.
Let “third player” be any C-player c. Then, c ≺a a and
a ≺b c, see Figure 2. Therefore, a /∈ F(b) and b /∈ F(a)
by item 3(ii) of Definition 1. The proofs of the other parts
of the proposition are similar, but one needs to consider a D-
player as a “third player”.

Proposition 7. Humbled A-players cannot have friends
among D-players.

Proof. Suppose a and d are, respectively, an A-player and a
D-player such that a ∈ H and d ∈ F(a). Then, d ⊀a a by
item 4 of Definition 1, which contradicts to Figure 2.

Note that a ∈ F(b) is not equivalent to b ∈ F(a) per Def-
inition 1. In particular, in spite of the previous proposition, a
humbled A-player can be a friend of a D-player.
Proposition 8. a ⊩ L(“is an A-player”) iff agent a is an A-
player.

Proof. (⇒) : By our assumption, each of the groups of play-
ers is nonempty. Let agent a′ be any A-player and agent n
be any non-A-player. Assumption a ⊩ L(“is an A-player”)
implies that n ≺a a′ by item 7 of Definition 2. Therefore,
agent a is an A-player, see Figure 2.
(⇐) : Suppose that agent a is an A-player. Consider any
A-player a′ and non-A-player n. By item 7 of Definition 2,
it suffices to show that n ≺a a′. Note that n ≺a a′ is true
because agents a and a′ are A-players and agent n is not an
A-player, see Figure 2.

The proofs of the next two propositions are similar.
Proposition 9. a ⊩ L(“is a C-player”) iff agent a is a B-
player.
Proposition 10. a ⊩ L(“is a D-player”) iff agent a is a C-
player.
Proposition 11. a ⊮ L(“is a B-player”) for any agent a.

Proof. By our assumption, each of the groups of players is
nonempty. Let agent b be any B-player and agent n be any
non-B-player. Thus, n ⊀a b, see Figure 2. Therefore, we
have a ⊮ L(“is a B-player”) by item 7 of Definition 2.

Proposition 12. a ⊩ LL(“is an A-player”) iff agent a is an
A-player.
Proposition 13. a ⊩ LL(“is a D-player”) iff agent a is a
B-player.

We conclude this example with the observation that in our
setting D-agents do not like any non-trivial group of people.
In other words, they only can like the group of all agents and
the empty group of agents.
Proposition 14. a ⊩ Lφ→Aφ ∨ A¬φ for each D-player a.

5 Model Checking
In this section, we describe a model checking algorithm for
formulae in language Φ.

5.1 Model Representation
Before describing the algorithm, let us discuss how prefer-
ence relation ≺a is represented in the input. One possible
way to describe a transitive relation is to give the set of pairs
of agents in the relation. Another, a more compact one, is to
define the relation as a transitive closure of the given set of
pairs [Aho et al., 1972].

a1 a2 a3 a4 a5

Figure 3: A Social Network.

For example, to describe the relation depicted in Figure 3
the first way, one should list pairs (a1, a2), (a1, a3), (a1, a4),



(a1, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), and
(a4, a5). To describe the same relation the second way, it
is sufficient only to list pairs (a1, a2), (a2, a3), (a3, a4), and
(a4, a5). In general, the size of the first representation could
be as large as big O of square of the size of the second one.
Since the efficiency of an algorithm is measured as a function
of the size of its input, the larger is the size of the input repre-
sentation, the more efficient the algorithm appears to be. An
honest algorithm analysis should use the most compact rep-
resentation of the data. Following this principle, we assume
that the preference relation in a social network is defined as
a transitive closure of the set of pairs given in the description
of the relation.

5.2 Multipath Problem
We describe the model checking algorithm in the next section.
Here we discuss a graph problem whose solution is used by
the model checking algorithm.

Let us first review some terminology. A directed graph
(V,E) is defined by a set of vertices V and a set of directed
edges E. By a cut of the graph we mean a partitioning of
the set V into two disjoint sets. We allow either of these two
sets to be empty. An example of a cut is depicted in Figure 4,
where the vertices are divided into white and black.

b

a

e

d

f

c

h

Figure 4: Graph Partitioning

Problem. Given a cut (X,Y ) of a directed acyclic graph
(DAG), decide if there is a directed path from each vertex in
set X to each vertex in set Y .

For example, ifX is the set of all white vertices in Figure 4
and Y is the set of black vertices, then the answer is negative
because there is no directed path from vertex b to vertex d.

The brute-force approach to multipath problem is to use
depth-first-search algorithm to verify for each vertex x ∈ X
and each vertex y ∈ Y that there is a directed path from x to
y. The depth-first-search takes O(|V |+ |E|) time, where |V |
is the number of vertices and |E| is the number of edges in the
directed acyclic graph (V,E). Thus, the brute-force approach
execution time is O(|V |3 + |V |2 · |E|).

The multipath problem can be solved inO(|V |2+|V |·|E|)
using a different approach, consisting of two steps.

On the first step, topological sorting algorithm is used
to generate a linear ordering of the vertices of the graph:
v1, . . . , vn.

On the second step, dynamic programming is used to re-
cursively compute for each vertex vi the set of all vertices
R(vi) ⊆ X from which vertex vi is reachable by a directed

path:

R(vi) =

{
{vi} ∪R′(vi), if vi ∈ X,

R′(vi), if vi /∈ X,
(3)

where
R′(vi) =

⋃
(vj ,vi)∈E

R(vj). (4)
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Figure 5: Topological Sort

Figure 5 illustrates this algorithm on the example of the
DAG depicted in Figure 4. We assume that the topological
sorting algorithm returned ordering c, e, b, d, a, h, f . In Fig-
ure 5, setsR(v) are depicted in the rectangles under each ver-
tex. Thus, for example, R(d) = {c, e}, because {c, e} is the
set of all white vertices from which vertex d can be reached.
The content of the rectangles is computed recursively using
equation (3). For example, R(h) = R(b)∪R(d) because ver-
tex h does not belong to set X and it has only two incoming
edges: (b, h) and (d, h).

After sets R(v) are computed for each v ∈ V , to get
the answer to multipath problem, one only needs to check
if R(v) = X for each vertex v ∈ Y . In our example, the
answer is negative because R(d) = {c, e} ≠ {b, c, e} = X .

It is well known that topological sorting could be done in
O(|V |+|E|) time using, for example, depth-first-search algo-
rithm [Cormen et al., 2009, pp. 612-614]. We represent sets
of vertices as Boolean arrays. Namely, if V = {v1, . . . , vn}
and R ⊆ V , then set R is represented by a Boolean array
a[ ] of length n such that a[i] = t iff vi ∈ R. Under such
representation, it takes O(|V |) time to compute the union
of any two subsets of V . Note that the total number of the
unions computed during the second step of our algorithm is
O(|V | + |E|) because each edge (vj , vi) in formula (4) is
used exactly once during the entire computation. Thus, the
total execution time of the second step is O(|V |(|V |+ |E|)).
Therefore, the total execution time of the described solution
of the multipath problem is O(|V | + |E|) + O(|V |(|V | +
|E|)) = O(|V |2 + |V | · |E|).

5.3 Model Checking Problem
By the model checking problem we mean deciding if a ⊩ φ
is true for a given formula φ and a given agent a of a given so-
cial network. In this subsection, we show how the multipath
problem from the previous subsection could be used to solve
the model checking problem for language Φ. For an arbitrary
social network (A, {≺a}a∈A,F ,H, E , π), by |A| we mean
the number of agents in this network. By | ≺a | we mean the
size of relation ≺a using the second (more compact) repre-
sentation. For example, the size of the strict order depicted in
Figure 3 is 4. By |{≺a}a∈A| we denote

∑
a∈A |≺a |. Finally,



by |φ| we mean the size (number of symbols) of a formula
φ ∈ Φ.
Theorem 1. Model checking of formula φ for a given agent
in a given social network could be accomplished in time
O(|φ|(|A|3 + |A| · |{≺a}a∈A|)) in the worst case.

Proof. To check a ⊩ φ, we consider a dynamic programming
algorithm that for each subformula ψ of φ recursively checks
for each agent b ∈ A if b ⊩ ψ is true and stores the result for
the future use.

If formula ψ is η, ε, or a propositional variable, then check-
ing if b ⊩ ψ is true takes a constant time. In this case, check-
ing b ⊩ ψ for each agent b ∈ A takes time O(|A|). If for-
mula ψ has either the form ¬ψ1 or the form ψ1 → ψ2, then
b ⊩ ψ can be checked in a constant time using stored results
for b ⊩ ψ1 and b ⊩ ψ2. Then, checking b ⊩ ψ for each agent
b ∈ A takes time O(|A|).

If formula ψ has the form Fψ1, then, checking b ⊩ Fψ1

takes time O(|F(b)|) using pre-computed answers for valid-
ity of x ⊩ ψ1, where x ∈ F(b). Since F(b) ⊆ A, it takes
O(|A|2) to check b ⊩ Fψ1 for all agents b ∈ A.

If formula ψ has the form Lψ1, then to check if b ⊩ ψ is
true it suffices to check that there is a ≺b-path from each el-
ement of set X = {x ∈ A | x ⊮ ψ1} to each element of
set Y = {y ∈ A | y ⊩ ψ1}. This can be accomplished in
time O(|A|2 + |A| · |≺b |) using the solution of the multipath
problem described in the previous subsection. Then, check-
ing b ⊩ ψ for all agents b ∈ A takes

O

(∑
b∈A

(|A|2 + |A| · | ≺b |)

)
=

O

(∑
b∈A

|A|2 + |A| ·
∑
b∈A

| ≺b |

)
= O(|A|3 + |A| · |{≺b}b∈A|).

Thus, in the worst case, it takes O(|A|3+ |A| · |{≺b}b∈A|)
time to check for each agent b ∈ A if b ⊩ ψ is true. Therefore,
it takes O(|φ|(|A|3+ |A| · |{≺b}b∈A|)) to do the same for all
subformulae ψ of formula φ.

6 Axioms
In this section, we give a sound, complete, and decidable ax-
iomatization of our logical system. In addition to tautologies
in language Φ, the system contains the following axioms.

1. Distributivity: A(φ→ ψ) → (Aφ→ Aψ) and
F(φ→ ψ) → (Fφ→ Fψ),

2. Friends are Agents: Aφ→ Fφ,
3. Self-Friendship: Fφ→ φ,
4. Negative Introspection: ¬Aφ→ A¬Aφ,
5. Substitution: A(φ↔ ψ) → (Lφ→ Lψ),
6. Friends Think Alike:

Lφ ∧ FLψ → A(φ→ ψ) ∨ A(ψ → φ),
7. Humbleness: η ∧ φ ∧ Lφ→ Fφ,
8. Egotisticness: ε ∧ ¬φ ∧ Lφ→ F¬φ.

The meaning of the first five axioms above is straightfor-
ward. The Friends Think Alike axiom captures the require-
ment of item 3(ii) of Definition 1 that preferences of the
friends must be compatible. Specifically, it states that if an
agent likes those for whom φ is true and a friend of the agent
likes those for whom ψ is true, then either each φ-agent is a
ψ-agent or each ψ-agent is a φ-agent. This is the most non-
trivial among the axioms of our system.

The Humbleness axiom is better understood in the form
η ∧ Lφ ∧ F¬φ → ¬φ. In this form, it says that if a humbled
agent likes those for whom φ is true and she has a friend for
whom φ is false, then φ must be false for her as well. This
property follows from item 4 of Definition 1.

Similarly, the Egotisticness axiom can be better understood
if it is stated in the equivalent form ε∧ Lφ∧ Fφ→ φ. In this
form, it says that if an egotistic agent likes those for whom φ
is true and she has a friend for whom φ is true, then φ must
be true for her as well. This axiom captures the requirement
of item 5 of Definition 1.

We write ⊢ φ and say that formula φ ∈ Φ is a theorem
of our logical system if it can be derived from the above ax-
ioms using the Modus Ponens and the Necessitation inference
rules:

φ,φ→ ψ

ψ

φ

Aφ
.

The proofs of the next two theorems are omitted due to the
space constraint.

Theorem 2 (soundness). If ⊢ φ, then a ⊩ φ for each agent a
of each social network.

Theorem 3 (completeness). If a ⊩ φ for each agent a of each
social network, then ⊢ φ.

We conclude this section with an observation that our logi-
cal system is decidable, which follows from the completeness
theorem.

Theorem 4. Set {φ ∈ Φ | ⊢ φ} is decidable.

Proof. Set {φ ∈ Φ | ⊢ φ} is recursively enumerable because
it is axiomatizable. Set {φ ∈ Φ | ⊬ φ} is recursively enumer-
able because our logical system is sound and complete with
respect to social networks with finite sets of agents. There-
fore, set {φ ∈ Φ | ⊢ φ} is decidable.

7 Conclusion
We have proposed an egocentric logic of preferences. Un-
like the previous works on preference and desire logics, the
egocentric approach allows us to express nested statements of
the form “agent a likes those who like humbled people”. Our
main technical results are a model checking algorithm and a
sound, complete, and decidable logical system describing the
properties of this modality.

Acknowledgments
Junli Jiang acknowledges the support of the Key Re-
search Funds for the Key Liberal Science Research Base of
Chongqing (NO.16SKB036) and the Fundamental Research
Funds for the Central Universities (SWU1409412).



References
[Aho et al., 1972] Alfred V. Aho, Michael R Garey, and Jef-

frey D. Ullman. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131–137, 1972.
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