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Abstract

An agent, or a coalition of agents, is blameable for
an outcome if she had a strategy to prevent it. In
this paper we introduce a notion of limited blame-
worthiness, with a constraint on the amount of sac-
rifice required to prevent the outcome. The main
technical contribution is a sound and complete log-
ical system for reasoning about limited blamewor-
thiness in the strategic game setting.

Introduction
With humans delegating more and more decision power to au-
tonomous systems such as self-driving cars, automated stock
traders, and war robots, there is a need to adapt the no-
tion of responsibility which would be applicable to artificial
agents. In addition, autonomous agents must be able to reason
about their own and human responsibility in a hybrid human-
machine environment. Towards this goal, in this paper we
study the responsibility of agents and coalitions of agents in
a strategic game setting.
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Figure 1: Strategic Game.
As an example, consider the strategic game depicted in Fig-

ure 1. This game has two players that we refer to as Alice and
Bob. In this game, Alice has actions a1, a2, and a3, while
Bob has actions b1, b2, and b3. The outcome of each action
profile is depicted in the corresponding cell of the table. For
example, if Alice chooses action a2 while Bob picks b3, fire
starts. Note that we allow games to be nondeterministic. For
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example, if Alice and Bob choose strategies a3 and b2, re-
spectively, then the fire might start or it might not. In this case
we say that action profile (a3, b2) has two different outcomes:
“fire” and “no fire” depicted as half-cells of the tables.

We say that an agent (or a coalition) is blameable for ϕ if
statement ϕ is true and the agent (or the coalition) had a strat-
egy to prevent ϕ. This definition is often referred to as Frank-
furt’s [1969] principle of alternative possibilities [Widerker,
2017]. In our example, if Alice and Bob choose actions a2
and b3 respectively, then fire starts. In this case, Alice is blam-
able for the fire:

(a2, b3,fire) 
 BAlice“Fire started”
because fire happened and Alice had a strategy (use action a1)
that would prevent the statement “Fire started” from being
true. In the same situation, Bob is not blamable for the start
of the fire because he had no strategy to prevent it:

(a2, b3,fire) 
 ¬BBob“Fire started”.
Note that according to the principle of alternative possibili-
ties, in the case of the action profile (a3, b2), whether Alice is
blamable or not depends on the outcome of the actions:

(a3, b2,fire) 
 BAlice“Fire started”,
(a3, b2, no fire) 
 ¬BAlice“Fire started”.

Naumov and Tao proposed complete logical systems that
describe the properties of blameworthiness as a modality
in perfect information strategic games [2019], imperfect
information strategic games [2020c; 2020b], and security
games (2020a).

In many real world situations humans are not blamed for
the outcome if preventing it would require sacrificing too
much. Can you shoot your neighbour’s dog if it is attack-
ing your child? Should you share your house with homeless
people? Should you donate $1000 for a good cause? Can you
use a cell phone in a movie theater if you are having a heart
attack? Should you lend your calculator during an exam if
you need it too? Should you proof-read a research paper for
your friend? Do you have to finish a job assignment if it re-
quires you to work overtime? Should you climb on a roof to
save a kitten?

In the words of Shelly Kagan in The Limits of Morality,
The greater the sacrifice which morality requires,
obviously enough, the more significantly it will de-
crease the agent’s ability to mold his life as he



chooses and to promote his interests. The moder-
ate may want to argue that more than a certain loss
of such autonomy is morally intolerable. Hence,
morality can exact so much, and no more. [Kagan,
1991, p.21]

In this paper we consider limited blameworthiness modal-
ity Bsaϕ which means that formula ϕ is true and agent a had
a strategy with cost at most s to prevent it. Let us return to
our example depicted in Figure 1 and to assume that the cost
of each action for each agent is as shown in the figure. For
example, the cost of action a1, that Alice can use to prevent
the fire, is 100. Thus, if Alice chooses action a2, Bob chooses
b3, and fire starts, then Alice can be blamed for the fire if the
moral limit on her sacrifice is 100

(a2, b3,fire) 
 B100
Alice“Fire started”

because she has an action with cost at most 100 to prevent the
fire. At the same time, if the moral limit on Alice’s sacrifice
is set to 50, then she cannot be blamed for the fire

(a2, b3,fire) 
 ¬B50
Alice“Fire started”

because she has no action with cost at most 50 to prevent
the fire. Finally, note that, as a coalition, Alice and Bob can
prevent the fire if Alice chooses action a2 and Bob chooses
action b2 with total cost 5 + 3 = 8. Thus, we say that their
coalition is blameable with sacrifice 8,

(a2, b3,fire) 
 B8
Alice, Bob“Fire started”.

In this paper we propose a sound and complete logical sys-
tem that captures the universal properties of limited blame-
worthiness modality BsCϕ. The axioms of the proposed sys-
tems are variations of the axioms for blameworthiness modal-
ity BCϕ without sacrifice limit [Naumov and Tao, 2019].
However, the proof of the completeness in the current paper
is very different from [Naumov and Tao, 2019]; it is closer to
the proof of the completeness for Resource-Bounded Coali-
tion Logic [Alechina et al., 2011]. We further discuss the re-
lation between these works in the beginning of Completeness
section.

Other Related Literature
The other form of responsibility discussed in the literature is
responsibility for seeing to ϕ. An agent is responsible for see-
ing to ϕ if the action taken by the agent unavoidably leads to
ϕ being true. This notion of responsibility is captured in the
logic of seeing-to-it-that (STIT) [Belnap and Perloff, 1990;
Horty, 2001; Horty and Belnap, 1995; Horty and Pacuit,
2017; Olkhovikov and Wansing, 2018]. The cost of sacri-
fice could be potentially added to responsibility for seeing to
it and interpreted as a degree of praiseworthiness. In many
situation, the more an agent had to sacrifice to see to ϕ, the
more she should be praised for ϕ.

Naumov and Yew proposed a dilemma modality that cap-
tures a hard choice that an agent faces between two or more
undesirable alternatives [2021]. Although this modality in
itself does not represent a form of responsibility, it also con-
tains a cost of sacrifice. In their case, the sacrifice is the limit
on the cost of actions that eliminates costly actions that could
have been used to avoid making the hard choice.

Strategic Games with Cost of Actions
In this section, we describe the class of games that will be
used as a semantics of our logical system. Throughout this
paper, we assume a fixed finite setA of agents and a fixed set
of propositional variables. By a coalition we mean an arbi-
trary subset of A. By XY we denote the set of all functions
from set Y to set X .
Definition 1. A game is a tuple (∆, ‖ · ‖, d0,Ω, P, π), where

1. ∆ is a nonempty set of “actions”, any function from set
∆A is called a “complete action profile”,

2. ‖d‖ is a nonnegative real number, called the cost of ac-
tion d ∈ ∆,

3. d0 ∈ ∆ is a zero-cost action: ‖d0‖ = 0,

4. Ω is a set of “outcomes”,

5. a set of “plays” P is an arbitrary subset of ∆A × Ω
satisfying the following nontermination condition: for
each complete action profile δ ∈ ∆A there is at least
one outcome ω ∈ Ω such that (δ, ω) ∈ P ,

6. π is a function that maps propositional variables into
subsets of P .

In the introductory example, Alice and Bob had different
sets of actions. In Definition 1, we assume that each agent has
the same set of actions ∆. This assumption is not significant.
We made it to simplify the notations. We interpret the cost
of any action ‖d‖ as the amount of “sacrifice” that this action
requires. We will reflect on the reasons for considering only
nonnegative sacrifice in Syntax and Semantics section when
we discuss sacrifice of a coalition. Although in this paper
we assume that the cost of an action does not depend on the
agent, this restriction is also not significant.

In game theory, strategic games are usually assumed to be
deterministic in the sense that the outcomes (pay-offs) are
uniquely determined by the complete action profile. Nonde-
terminacy in such games is usually modeled through an addi-
tional player, often interpreted as “nature” or “god”. In this
paper we have chosen to model nondeterminacy by explicitly
assuming that a complete action profile might correspond to
multiple outcomes. In addition to simplifying our axiomatic
system, this choice also avoids the necessity to assign blame
to the “nature”.

The game depicted in Figure 1 has 9 complete action pro-
files corresponding to possible combinations of Alice’s and
Bob’s strategies. This game has 10 outcomes defined by the
“regions” of the table (eight squares and 2 triangles). In that
game, each outcome corresponds to a unique complete action
profile. In general, it will be convenient to assume that differ-
ent complete action profiles might result in the same outcome.
Thus, we introduce the set of “plays” P that specifies which
complete action profiles are consistent with which outcomes.
Informally, this set captures the rules of the game. The non-
termination condition requires each complete action profile to
lead to at least one outcome.

The existence of a zero-cost action in the game is important
for capturing the notion of limited blameworthiness. Indeed,
consider an agent that has a choice of just two actions: not to
save somebody’s life at cost 99 or to save the life at cost 100.



Intuitively, the sacrifice in such a setting is 1, not 100. By
requiring that there exists a zero-cost action, we, in essence,
“normalize” the costs of all actions available to the agent.

Recall from the introductory examples that we place a play,
not a state, on the left side of 
. In other words, statements
in our logical systems are not about states, but about plays.
Similarly, we interpret propositional variables as statements
about plays. This is why valuation function π in Definition 1
maps propositional variables into sets of plays rather than sets
of outcomes.
Definition 2. For any action profile γ ∈ ∆C of a coalition
C, by ‖γ‖ we mean the total cost of the action profile to the
coalition: ‖γ‖ =

∑
a∈C ‖γ(a)‖.

By defining the cost to a coalition as a sum of the costs of
actions of the individual members of the coalition, we ignore
the distribution of the burden between the individual mem-
bers. Although this makes sense in many real-world situa-
tions, it is also easy to see that in some cases this approach
might be problematic. For example, one probably should
blame a coalition of 10 people for breaking a rule if it cost
only $19 to all of them together to follow the rule. Indeed,
it is less than $2 per person. Similarly, one might argue that
1,000,000 people should be blamed for breaking the rule if it
costs them total of $1,999,999 to follow the rule. But what if
it costs $1,000,000 to one person and just $1 to each of the
remaining 999,999 people?

In this paper we decided to disallow negative costs of ac-
tions because they lead to even more paradoxical situations.
For example, consider a situation when to prevent ϕ one
needs a joint effort of Alice and Bob. Suppose that the ac-
tion required of Alice will cost her $1,000,000, while Bob
will make a profit (negative cost) on his action in the amount
of $1,000,000. Should we blame them, as a coalition, for not
preventing ϕ at zero cost?

Syntax and Semantics
The language Φ of our system is defined by the grammar

ϕ := p | ¬ϕ | ϕ→ ϕ | Nϕ | BsCϕ,
where p is a propositional variable, s ≥ 0 is a real number,
and C is a coalition. We read BsCϕ as “coalition C is blame-
able for statement ϕ because it would have to sacrifice at most
s to prevent ϕ”. We read Nϕ as “statement ϕ is universally
true in the given game”. By Nϕ we denote formula ¬N¬ϕ.
Thus, Nϕ means that statement ϕ is true on at least one play
of the game. We assume that conjunction ∧, disjunction ∨,
biconditional↔, and truth constant > are defined as usual.

For any functions f and g, we write f =X g, if f(x) =
g(x) for each x ∈ X . The following is the key definition
of this paper. Item 5 of this definition formally specifies the
meaning of the blameworthiness modality BsCϕ.
Definition 3. For any formula ϕ in language Φ and any play
(δ, ω) ∈ P of a game (∆, ‖ · ‖, d0,Ω, P, π), the satisfaction
relation (δ, ω) 
 ϕ is defined recursively as follows:

1. (δ, ω) 
 p if (δ, ω) ∈ π(p), where p is a propositional
variable,

2. (δ, ω) 
 ¬ϕ if (δ, ω) 1 ϕ,

3. (δ, ω) 
 ϕ→ ψ if (δ, ω) 1 ϕ or (δ, ω) 
 ψ,

4. (δ, ω) 
 Nϕ if (δ′, ω′) 
 ϕ for each play (δ′, ω′) ∈ P ,

5. (δ, ω) 
 BsCϕ if

(a) (δ, ω) 
 ϕ,
(b) there is a profile γ ∈ ∆C such that ‖γ‖ ≤ s and for

each play (δ′, ω′) ∈ P , if γ =C δ′, then (δ′, ω′) 1
ϕ,

(c) for each proper subset D of set C and each action
profile γ ∈ ∆D where ‖γ‖ ≤ s, there is a play
(δ′, ω′) ∈ P such that γ =D δ′ and (δ′, ω′) 
 ϕ.

Note that if a coalition had a strategy to prevent condition
ϕ, then every superset of the coalition had such strategy as
well. To avoid blaming a coalition for a failure of its subset,
the above definition includes the minimality condition cap-
tured by item 5(c). Namely, we say that a coalition C is
blamable for statement ϕ with sacrifice limit s if ϕ is true,
coalition C had a strategy to prevent it at cost no more than
s, and no subset of C had a strategy to prevent ϕ at cost no
more than s.

Although the intended meaning of the sacrifice s in modal
formula BsCϕ is to capture the limit of the blameworthiness,
it can also be interpreted as a degree of blameworthiness. In-
tuitively, the lower the cost of prevention is, the more blam-
able the coalition should be for the outcome. Halpern and
Kleiman-Weiner use the cost of prevention to define one of
the degrees of blameworthiness that they propose (2018). An
important difference between Definition 3 and Halpern and
Kleiman-Weiner’s approach is that we use absolute sacrifice
while they use relative sacrifice. Relative sacrifice is the dif-
ference between the current costs encountered by a coali-
tion and the costs required to prevent the undesirable out-
come. For example, consider a business company that spent
$100,000 on a safety device that does not completely prevent
a certain type of accident, but the company could have spent
$100,001 on a more expensive version of the device that com-
pletely prevents this type of accident. If the accident happens,
should the degree of blame be computed based on absolute
cost $100,001 or the relative cost of $1? In the former case
the degree of blame will be low, in the second case it will be
high. In this example, it probably makes sense to use the rel-
ative sacrifice as proposed in [Halpern and Kleiman-Weiner,
2018]. However, if in the same setting the original $100,000
were spent not on a safety device, but on a new warehouse,
then the absolute sacrifice of $100,001 is probably a better
measure of the degree of company’s blameworthiness for the
accident. The logical system proposed in this paper is suitable
for reasoning about the latter, but not the former setting.

Finally, the discussed above degree of blameworthiness of
a group should not be confused with the degree of respon-
sibility within the group. The latter is concerned with how
the blame should be divided between several members of the
group. In the spirit of this paper, one might suggest that de-
gree within the group could be defined as a ratio of total costs
that would be imposed on the whole group to the cost im-
posed on an individual. For example, if prevention would
require a joint effort of Alice and Bob and the cost of the ap-
propriate actions is $2 for Alice and $5 for Bob, then Alice



is responsible for the outcome to a higher degree than Bob.
However, this approach is problematic because there might
be two different ways to prevent outcome: one of them would
cost $2 to Alice and $5 to Bob, while the other would cost
$5 to Alice and $2 to Bob. Thus, the cost-based approach ex-
plored in this paper in some situations might be used to define
the degree of blameworthiness of a group but it is not likely
to be appropriate to define the degree of responsibility within
the group.

In this paper we use abbreviation BsCϕ for the disjunction∨
D⊆C BsDϕ. Informally, BsCϕ means “statement ϕ is true

and one of subsets of C could be blamed for it with sacri-
fice s”. As shown in the full version of the paper [Cao and
Naumov, 2019], it is equivalent to statement “ϕ is true and
coalition C could have prevented it at cost no more than s”.

Axioms
In addition to the propositional tautologies in language Φ, our
logical system contains the following axioms:

1. Truth: Nϕ→ ϕ and BsCϕ→ ϕ,
2. Distributivity: N(ϕ→ ψ)→ (Nϕ→ Nψ),
3. Euclidicity: ¬Nϕ→ N¬Nϕ,
4. None to Blame: ¬Bs∅ϕ,
5. Blamelessness of Truth: ¬BsC>,
6. Monotonicity: BsCϕ→ BtCϕ, where s ≤ t,
7. Minimality: BsCϕ→ ¬BsDϕ, where D ( C,
8. Joint Responsibility: if C ∩D = ∅, then

NBsCϕ ∧ NBtDψ → (ϕ ∨ ψ → Bs+tC∪D(ϕ ∨ ψ)),
9. Strict Conditional:

N(ϕ→ ψ)→ (BsCψ → (ϕ→ BsCϕ)),
10. Fairness: BsCϕ→ N(ϕ→ BsCϕ),
11. Substitution: N(ϕ↔ ψ)→ (BsCϕ→ BsCψ).

The Truth, the Distributivity, and the Euclidicity axioms
for modality N capture the fact that this is an S5-modality [Fa-
gin et al., 1995]. The Truth axiom for modality B states that a
coalition can only be blamed for something which is true. The
None to Blame axiom says that the empty coalition can not
be blamed for anything. The Blamelessness of Truth axioms
says that none can be blamed for a tautology. Informally, this
axiom is sound because there could be no strategy to prevent
a tautology. The Monotonicity axiom states that if a coali-
tion C can be blamed for not preventing an outcome at cost
at most s, then either the coalition itself or at least one of its
subsets can also be blamed for not preventing the outcome
at cost at most t, where t ≥ s. The Minimality axiom says
that if a coalition can be blamed for ϕ, then no proper subset
of this coalition can be blamed for ϕ. The Joint Responsi-
bility axiom shows how blames of two disjoint coalitions can
be combined into a blame of their union. To understand the
Strict Conditional axiom, note that formula N(ϕ→ ψ) means
that ϕ implies ψ for each play of the game. The axiom says
that if a coalition is responsible for statement ψ, then either
the coalition itself or at least one of its subsets is responsible
for a stronger statement ϕ as long as ϕ is true. The Fairness

axiom states that if a coalition is blamed for ϕ, then it should
be blamed for ϕ each time when ϕ is true.

We write ` ϕ if formula ϕ is provable from the axioms
of our system using the Modus Ponens and the Necessitation
inference rules:

ϕ,ϕ→ ψ

ψ
,

ϕ

Nϕ
.

If ` ϕ, then we say that formula ϕ is a theorem of our logical
system. In addition to unary relation ` ϕ, we also consider
a binary relation X ` ϕ. We write X ` ϕ if formula ϕ is
provable from all theorems of our logical system and the set
of additional formulae X using the Modus Ponens inference
rule only. It is easy to see that statement ∅ ` ϕ is equiva-
lent to ` ϕ. A set of formulae X is consistent if there is no
formula ϕ such that X ` ϕ and X ` ¬ϕ.

Lemma 1 (Lindenbaum). Any consistent set of formulae can
be extended to a maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma applies
here [Mendelson, 2009, Proposition 2.14]. However, since
the formulae in our logical system use real numbers in su-
perscript, the set of formulae is uncountable. Thus, the proof
of Lindenbaum’s lemma in our case relies on the Axiom of
Choice. �

Completeness
We show the soundness of our logical system in the full ver-
sion of this paper [Cao and Naumov, 2019]. In the rest of this
paper, we prove its completeness.

We will use modality �sCϕ as an abbreviation for state-
ment N(¬ϕ → BsC¬ϕ). Informally, formula �sCϕ means
that coalition C or one of its subsets is blamable for ¬ϕ in
each outcome of the game in which statement ϕ is false. In
other words, �sCϕ is a counterfactual modality that means
that coalition C could have prevented ¬ϕ at cost s. This
modality is different from the “coalition C has a strategy to
achieve ϕ at costs s” modality of Resource-Bounded Coali-
tion Logic (RBCL) [Alechina et al., 2011] denoted here by
SsCϕ. For example, statement ϕ∧�sC¬ϕ means that ϕ is true
now, but coalition C could have prevented it at cost s. At the
same time, statement ϕ∧SsC¬ϕ in RBCL means that ϕ is true
now butC could make it false in the future. In spite of this se-
mantical difference between modalities �sCϕ and SsCϕ, they
share many common properties. In the full version of this
paper [Cao and Naumov, 2019], we prove the following ba-
sic properties of the modalities �sCϕ and N. Some of these
properties are listed as axioms in [Alechina et al., 2011].

P0. ` �sCϕ→ N�sCϕ.

P1. If ϕ1, . . . , ϕn ` ψ, t1 + · · · + tn ≤ s, and
D1, . . . , Dn are pairwise disjoint subsets of set C, then
�t1D1

ϕ1, . . . ,�
tn
Dn
ϕn ` �sCψ,

P2. ` Nϕ→ �sCϕ,

P3. ` �t∅ϕ→ Nϕ,

P4. ` ¬�sC¬>.

P5. ` Nϕ→ NNϕ,



P6. ϕ1, . . . , ϕn ` ψ, then Nϕ1, . . . ,Nϕn ` Nψ,
P7. ` ¬BsCϕ→ ¬ϕ ∨ ¬�sC¬ϕ ∨

∨
D(C �sD¬ϕ.

P8. ` BsCϕ→ �sC¬ϕ.
P9. ` BsCϕ→ ¬�sD¬ϕ, where D ( C.

In the rest of the paper we use these properties to prove the
completeness of our logical system.

Compared to this paper, the blameworthiness modality
in [Naumov and Tao, 2019] is missing not only the sacri-
fice constraint, but also the minimality condition of item 5(c)
in Definition 3. As a result, the blameworthiness modality
in [Naumov and Tao, 2019] is, essentially, a sacrifice-free ver-
sion of modality B. The proof of the completeness in [Nau-
mov and Tao, 2019] does not introduce anything similar to
abbreviations �sCϕ. Instead, it constructs the canonical game
using the blameworthiness modality directly.

Canonical Model
As usual in modal logic, the proof of the completeness relies
on the construction of a canonical model. In our case, we
define the canonical gameG(ω0) = (∆, ‖ · ‖, d0,Ω, P, π) for
each maximal consistent set of formulae ω0. We define each
component of the canonical game G(ω0) separately.
Definition 4. Set ∆ consists of a zero-cost action d0, which
is not a triple, and all triples (ϕ,C, s) such that ϕ ∈ Φ is a
formula, C is a nonempty coalition, and s is a non-negative
real number.

Informally, we consider actions as “votes” of agents. Zero-
cost action d0 could be interpreted as abstaining from voting.
Action (ϕ,C, s) by an agent a means that agent a is voting
as a part of coalition C to force ϕ at the total cost s to the
whole coalition. If agent a votes (ϕ,C, s), then statement ϕ
is not necessarily true in the outcome. The vote aggregation
mechanism is given in Definition 7. Definition 4 is substan-
tially different from a similar definition in [Naumov and Tao,
2019], where each action consists of just a single formula ϕ.
Definition 5. For each action d ∈ ∆, let ‖d‖ = 0 if d = d0

and ‖d‖ =
s

|C|
if d = (ϕ,C, s).

Informally, ‖d‖ = s
|C| means that the cost of each joint

action is divided evenly between all members of the coalition.
Note that size |C| of coalition C is non-zero by Definition 4.
Definition 6. The set of outcomes Ω is the set of all maximal
consistent sets of formulae ω such that for each formula ϕ if
Nϕ ∈ ω0, then ϕ ∈ ω.
Definition 7. The set P ⊆ ∆A×Ω consists of all pairs (δ, ω)
such that for any �sCψ ∈ ω0, if δ(a) = (ψ,C, s) for each
agent a ∈ C, then ψ ∈ ω.

In other words, for each formula �sCψ ∈ ω0, if each mem-
ber of coalition C votes as a part of C to force ψ at cost s,
then ψ is guaranteed to be true in the outcome.
Definition 8. π(p) = {(δ, ω) ∈ P | p ∈ ω} for each propo-
sitional variable p.

This concludes the definition of the canonical gameG(ω0).
In Lemma 5, we prove the nontermination condition from
item 5 of Definition 1 is satisfied for game G(ω0).

As usual, the key part of the proof of the completeness is
the induction, or “truth”, lemma. In our case this is Lemma 7.
The next three lemmas are auxiliary lemmas used in the proof
of Lemma 7.

Lemma 2. For any play (δ, ω) ∈ P and any formula
�sC¬ϕ ∈ ω there is a profile γ ∈ ∆C where ‖γ‖ ≤ s such
that for any play (δ′, ω′) ∈ P if γ =C δ′, then ϕ /∈ ω′.

Proof. Define γ ∈ ∆C to be an action profile of coalition C
such that for each agent a ∈ C,

γ(a) = (¬ϕ,C, s). (1)

Claim 1. ‖γ‖ ≤ s.

PROOF OF CLAIM. If set C is not empty, then, by Def-
inition 2 and Definition 5, ‖γ‖ =

∑
a∈C ‖(ϕ,C, s)‖ =∑

a∈C
s

|C|
= s.

If set C is empty, then ‖γ‖ = 0 by Definition 2. At the
same time, s ≥ 0 by the definition of language Φ. Therefore,
‖γ‖ ≤ s. �

Consider any play (δ′, ω′) ∈ P such that γ =C δ′. Recall
that �sC¬ϕ ∈ ω by the assumption of the lemma. Hence
ω ` N�sC¬ϕ by Property P0. Thus, ¬N�sC¬ϕ /∈ ω because
set ω is maximal. Then, N¬N�sC¬ϕ /∈ ω0 by Definition 6.
Hence, because set ω0 is maximal,

¬N¬N�sC¬ϕ ∈ ω0. (2)

At the same time, formula ¬N�sC¬ϕ → N¬N�sC¬ϕ is an
instance of the Euclidicity axiom. Thus, by contraposition,
` ¬N¬N�sC¬ϕ → N�sC¬ϕ. Hence, by the Truth axiom
and the propositional reasoning, ` ¬N¬N�sC¬ϕ → �sC¬ϕ.
Then, ω0 ` �sC¬ϕ by the Modus Ponens inference rule using
statement (2). Hence, �sC¬ϕ ∈ ω0 because set ω0 is maxi-
mal. Thus, ¬ϕ ∈ ω′ by Definition 7, the assumption γ =C δ′

and statement (1). Then, ϕ /∈ ω′ because ω′ is consistent. �

Lemma 3. For any play (δ, ω) ∈ P , any profile γ ∈ ∆C , and
any formula ¬�sC¬ϕ ∈ ω, if ‖γ‖ ≤ s, then there is a play
(δ′, ω′) ∈ P such that γ =C δ′ and ϕ ∈ ω′.

Proof. Consider the following set X of formulae:

{ϕ} ∪ {ψ | Nψ ∈ ω0}
∪ {χ | �tDχ ∈ ω0, D ⊆ C,∀a ∈ D(γ(a) = (χ,D, t))}.

Claim 2. Set X is consistent.

PROOF OF CLAIM. Suppose the opposite. Thus, there are

Nψ1, . . . ,Nψm,�
t1
D1
χ1, . . . ,�

tn
Dn
χn ∈ ω0, (3)

such that D1, . . . , Dn ⊆ C, (4)
γ(a) = (χi, Di, ti) for all a ∈ Di, i ≤ n, (5)
ψ1, . . . , ψm, χ1, . . . , χn ` ¬ϕ. (6)

Without loss of generality, we can assume that formulae
χ1, . . . , χn are distinct. Thus, assumption (5) implies that
setsD1, . . . , Dn are pairwise disjoint. Hence, by Definition 5
and formula (5),



‖γ‖ =
∑
a∈C
‖γ(a)‖ ≥

∑
a∈D1

‖γ(a)‖+ · · ·+
∑
a∈Dn

‖γ(a)‖

=
∑
a∈D1

‖(χ1, D1, t1)‖+ · · ·+
∑
a∈Dn

‖(χn, Dn, tn)‖

=
∑
a∈D1

t1
|D1|

+ · · ·+
∑
a∈Dn

tn
|Dn|

= t1 + · · ·+ tn.

Thus, t1 + · · · + tn ≤ s by the assumption ‖γ‖ ≤ s of the
lemma. Then, assumption (6) by Property P1 implies

�0
∅ψ1, . . . ,�

0
∅ψm,�

t1
D1
χ1, . . . ,�

tn
Dn
χn ` �sC¬ϕ.

Hence, by Property P3 and the Modus Ponens rule applied m
times, Nψ1, . . . ,Nψm,�

t1
D1
χ1, . . . ,�

tn
Dn
χn ` �sC¬ϕ. Thus,

ω0 ` �sC¬ϕ due to statement (3). Hence, ω0 ` N�sC¬ϕ
by Property P0 and the Modus Ponens inference rule. Then,
N�sC¬ϕ ∈ ω0 because set ω0 is maximal. Thus, �sC¬ϕ ∈ ω
by Definition 6 and because ω ∈ Ω. Thus, ¬�sC¬ϕ /∈ ω
because set ω is consistent, which contradicts assumption
¬�sC¬ϕ ∈ ω of the lemma. Then, set X is consistent. �

By Lemma 1, set X can be extended to a maximal consistent
set ω′. Thus, ϕ ∈ X ⊆ ω′ by the choice of sets X and ω′.
Also, ω′ ∈ Ω by Definition 6 and the choice of setsX and ω′.

Let the complete action profile δ′ be defined as follows:

δ′(a) =

{
γ(a), if a ∈ C,
d0, otherwise.

(7)

Then, γ =C δ′.
Claim 3. (δ′, ω′) ∈ P .

PROOF OF CLAIM. Consider any formula �tDχ ∈ ω0 such
that δ′(a) = (χ,D, t) for each a ∈ D. By Definition 7, it
suffices to show that χ ∈ ω′.
Case I: D ⊆ C. Thus, χ ∈ X by the definition of set X .
Therefore, χ ∈ ω′ by the choice of set ω′.
Case II: D * C. Consider any a ∈ D \C. Thus, δ′(a) = d0
by equation (7). At the same time, δ′(a) = (χ,D, t) because
a ∈ D. Thus, d0 = (χ,D, t), which is a contradiction, be-
cause d0 is not a triple by Definition 4. �
This concludes the proof of the lemma. �

Lemma 4. For each outcome ω ∈ Ω, there is a complete
action profile δ ∈ ∆A such that (δ, ω) ∈ P .

Proof. Consider a complete action profile δ where δ(a) = d0
for all a ∈ A. To show (δ, ω) ∈ P , consider any such formula
�tDχ ∈ ω0 that δ(a) = (χ,D, t) for all a ∈ D. Due to
Definition 7, it enough to prove that χ ∈ ω.
Case I: D = ∅. Thus, assumption �tDχ ∈ ω0 implies
ω0 ` Nχ by Property P3 and the Modus Ponens inference
rule. Hence, Nχ ∈ ω0 because set ω0 is maximal. Thus,
χ ∈ ω by Definition 6 because ω ∈ Ω.
Case II: D 6= ∅. Hence, set D contains at least one agent
a. Then, (χ,D, t) = δ(a) = d0 by the definition of profile δ.
Thus, d0 = (χ,D, t), which is a contradiction, because d0 is
not a triple by Definition 4. �

Next, we show that canonical game G(ω0) satisfies the
nontermination property from item 5 of Definition 1.

Lemma 5. For any complete action profile δ ∈ ∆A there is
an outcome ω ∈ Ω such that (δ, ω) ∈ P .

Proof. Recall that game G(ω0) is defined for a given maxi-
mal consistent set ω0. Then, ω0 ∈ Ω by Definition 6 and the
Truth axiom. Hence, by Lemma 4, there is a complete action
profile δ0 ∈ ∆A such that (δ0, ω0) ∈ P .

Note that ‖δ‖ is a finite number because the set of all agents
A is finite. Thus, ` ¬�‖δ‖A ¬> by Property P4. Hence,
¬�‖δ‖A ¬> ∈ ω0 because set ω0 is maximal. Thus, by
Lemma 3 in the case of the play (δ0, ω0), there is a play
(δ′, ω′) ∈ P such that δ =A δ′ and > ∈ ω′. Note that
δ =A δ

′ implies that complete action profiles δ and δ′ are the
same. Then, (δ, ω′) ∈ P . Choose ω to be ω′. �

Lemma 6. For each play (δ, ω) ∈ P and each formula
¬Nϕ ∈ ω, there is a play (δ′, ω′) ∈ P such that ¬ϕ ∈ ω′.

Proof. Let X be the set {¬ϕ} ∪ {ψ | Nψ ∈ ω0}. Next, we
prove the consistency of set X . Assume the opposite. Hence,
there are formulae Nψ1, . . . ,Nψn ∈ ω0 where ψ1, . . . , ψn `
ϕ. Thus, Nψ1, . . . ,Nψn ` Nϕ due to Property P6. Then,
ω0 ` Nϕ because Nψ1, . . . ,Nψn ∈ ω0. Thus, ω0 ` NNϕ by
Property P5. Hence, it follows from assumption ω ∈ Ω and
Definition 6 that Nϕ ∈ ω. Thus, ¬Nϕ /∈ ω by the consistency
of set ω, which contradicts the assumption ¬Nϕ ∈ ω of the
lemma. Therefore, set X is consistent. By Lemma 1, set X
could be extended to a maximal consistent set ω′. Observe
that ¬ϕ ∈ X ⊆ ω′ due to the definition of set X . Finally, by
Lemma 4, there is a profile δ′ where (δ′, ω′) ∈ P . �

Next is the “truth” lemma for our proof of the completeness
theorem, whose proof can be found in the full version of this
paper [Cao and Naumov, 2019].

Lemma 7. (δ, ω) 
 ϕ iff ϕ ∈ ω for any play (δ, ω) ∈ P and
any formula ϕ ∈ Φ.

Strong Completeness
Theorem 1. If X 0 ϕ, then there is a game and a play (δ, ω)
of the game where (δ, ω) 
 χ for all χ ∈ X and (δ, ω) 1 ϕ.

Proof. Assume that X 0 ϕ. Hence, set X ∪ {¬ϕ} is consis-
tent. By Lemma 1, set X ∪ {¬ϕ} can be extended to a max-
imal consistent set ω0. Let G(ω0) = (∆, ‖ · ‖, d0,Ω, P, π)
to be the canonical game defined above. Then, ω0 ∈ Ω by
Definition 6 and the Truth axiom.

By Lemma 4, there exists an action profile δ ∈ ∆A such
that (δ, ω0) ∈ P . Hence, (δ, ω0) 
 χ for all χ ∈ X and
(δ, ω0) 
 ¬ϕ by Lemma 7 and the choice of set ω0. There-
fore, (δ, ω0) 1 ϕ by Definition 3. �

Conclusion
In this paper we combine the ideas from the logics of resource
bounded coalitions [Alechina et al., 2011] and blameworthi-
ness [Naumov and Tao, 2019] into a logical system that cap-
tures the properties of limits of blameworthiness. The main
technical result is a strongly complete logical system describ-
ing the limited blameworthiness modality.



References
[Alechina et al., 2011] Natasha Alechina, Brian Logan,

Hoang Nga Nguyen, and Abdur Rakib. Logic for coali-
tions with bounded resources. Journal of Logic and Com-
putation, 21(6):907–937, December 2011.

[Belnap and Perloff, 1990] Nuel Belnap and Michael
Perloff. Seeing to it that: A canonical form for agentives.
In Knowledge representation and defeasible reasoning,
pages 167–190. Springer, 1990.

[Cao and Naumov, 2019] Rui Cao and Pavel Naumov. The
limits of morality in strategic games. arXiv:1901.08467,
2019.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning about knowledge.
MIT Press, Cambridge, MA, 1995.

[Frankfurt, 1969] Harry G Frankfurt. Alternate possibili-
ties and moral responsibility. The Journal of Philosophy,
66(23):829–839, 1969.

[Halpern and Kleiman-Weiner, 2018] Joseph Y Halpern and
Max Kleiman-Weiner. Towards formal definitions of
blameworthiness, intention, and moral responsibility. In
Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence (AAAI-18), 2018.

[Horty and Belnap, 1995] John F Horty and Nuel Belnap.
The deliberative STIT: A study of action, omission, abil-
ity, and obligation. Journal of Philosophical Logic,
24(6):583–644, 1995.

[Horty and Pacuit, 2017] John Horty and Eric Pacuit. Action
types in STIT semantics. The Review of Symbolic Logic,
pages 1–21, 2017.

[Horty, 2001] John F Horty. Agency and deontic logic. Ox-
ford University Press, 2001.

[Kagan, 1991] Shelly Kagan. The Limits of Morality. Oxford
Ethics Series. Clarendon Press, 1991.

[Mendelson, 2009] Elliott Mendelson. Introduction to math-
ematical logic. CRC press, 2009.

[Naumov and Tao, 2019] Pavel Naumov and Jia Tao. Blame-
worthiness in strategic games. In Proceedings of Thirty-
third AAAI Conference on Artificial Intelligence (AAAI-
19), 2019.

[Naumov and Tao, 2020a] Pavel Naumov and Jia Tao.
Blameworthiness in security games. In Proceedings of
Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-20), 2020.

[Naumov and Tao, 2020b] Pavel Naumov and Jia Tao. Duty
to warn in strategic games. In Amal El Fallah Seghrouchni,
Gita Sukthankar, Bo An, and Neil Yorke-Smith, editors,
Proceedings of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’20,
Auckland, New Zealand, May 9-13, 2020, pages 904–
912. International Foundation for Autonomous Agents and
Multiagent Systems, 2020.

[Naumov and Tao, 2020c] Pavel Naumov and Jia Tao. An
epistemic logic of blameworthiness. Artificial Intelligence,
283, June 2020. 103269.

[Naumov and Yew, 2021] Pavel Naumov and Rui-Jie Yew.
Ethical dilemmas in strategic games. In Proceedings of
Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-21), 2021.

[Olkhovikov and Wansing, 2018] Grigory K Olkhovikov
and Heinrich Wansing. Inference as doxastic agency. part
i: The basics of justification STIT logic. Studia Logica,
pages 1–28, 2018.

[Widerker, 2017] David Widerker. Moral responsibility and
alternative possibilities: Essays on the importance of al-
ternative possibilities. Routledge, 2017.


	Introduction
	Other Related Literature
	Strategic Games with Cost of Actions
	Syntax and Semantics
	Axioms
	Completeness
	Canonical Model
	Strong Completeness

	Conclusion

