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Abstract

The article compares two different approaches of incorporating probability
into coalition logics. One is based on the semantics of games with stochastic
transitions, and the other on games with the stochastic failures. The work
gives an example of a non-trivial property of coalition power for the first
approach and a complete axiomatization for the second approach.

It turns out that the logical properties of the coalition power modality
under the second approach depend on whether the modal language allows the
empty coalition. The main technical results for the games with stochastic
failures are a strong completeness theorem for the logical system without the
empty coalition and an incompleteness theorem which shows that there is no
strongly complete logical system in the language with the empty coalition.

1. Introduction

1.1. Coalition Logic

Coalition logics study strategic abilities of coalitions expressible through
modality [C]ϕ that stands for “coalition C has a strategy to achieve ϕ”.
Several such logics for different settings were originally introduced by Marc
Pauly [1, 2], who also gave a complete axiomatization of the basic coalition
logic to achieve in one step. The key axiom in his system is what we call the

Email addresses: pgn2@cornell.edu (Pavel Naumov), kjros2@illinois.edu
(Kevin Ros)

Preprint submitted to Journal of Logic and Computation April 8, 2021



Cooperation axiom:

[C](ϕ→ ψ)→ ([D]ϕ→ [C ∪D]ψ), (1)

where coalitions (sets of agents) C and D are disjoint. Informally, this axiom
states that if coalition C has a strategy to achieve ϕ → ψ and coalition D
has a strategy to achieve ϕ, then working together these two coalitions can
achieve ψ. The condition that coalitions C and D are disjoint is important
because otherwise any agent a ∈ C ∩D would be facing a dilemma between
acting according to the strategy of coalition C and the strategy of coalition
D.

Coalition logics have been widely studied in the literature [3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15]. Alur, Henzinger, and Kupferman introduced
Alternating-Time Temporal Logic (ATL) that combines temporal and coali-
tion modalities [16]. Goranko and van Drimmelen [17] gave a complete ax-
iomatization of ATL. Decidability and model checking problems for ATL-
like systems have also been studied [18, 19, 20]. Alternative approaches to
expressing the power to achieve a goal in a temporal setting are the STIT
logic [21, 22, 23, 24, 25] and Strategy Logic [26, 27, 19, 28]. Broersen, Herzig,
and Troquard have shown that coalition logic can be embedded into a vari-
ation of STIT logic [29].

A complete logical system for modality “coalition C has a strategy that
uses a fixed amount of resources”, has been proposed by Alechina, Lo-
gan, Nguyen, and Rakib [15] under name Resource-Bounded Coalition Logic
(RBCL). Model checking for RBCL and resource-bounded Alternating-time
Temporal Logic have been widely studied [30, 31, 32, 33, 34, 35, 13]. Var-
ious ways to incorporate knowledge into coalition logic has been also pro-
posed [36, 37, 38, 39, 40].

1.2. Stochastic Games

In Marc Pauly’s semantics of coalition logics, the complete action profile
of all players uniquely determines the outcome state of the game. The same
is true about concurrent game semantics of ATL. It is natural to consider
games in which the complete action profile of all players only predetermines
a distribution of probabilities on the set of possible outcomes. We refer to
such games as games with stochastic transitions. Chen and Lu added the
probability of achieving a goal to the syntax of ATL and developed model
checking algorithms for the proposed system [41]. Another version of ATL
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with probabilistic success was proposed by Bulling and Jamroga [42]. They
considered modality 〈〈A〉〉pωϕ that stands for “coalition C can bring about
ϕ with success level of at least p when the opponents behave according to
ω” and investigated its model checking properties. Huang, Su, and Zhang
combined perfect recall and coalition power to achieve a goal with a cer-
tain probability and discussed the model checking properties of their logical
system [43]. Coalition power to achieve a goal with a certain probability
is also used in PRISM-games, a model checker for stochastic multi-player
games [44, 45]. Aminof, Maubert, Murano, Kwiatkowska, and Rubin in-
corporated probability into strategy logic [46]. Nguyen and Rakib added
probability to resource-bounded version of ATL [47]. None of these works on
probabilistic extensions of ATL contain completeness results.

Novák and Jamroga [48] proposed to distinguish probability of achieving a
goal from probability of non-failure. They define the former as the probability
of the chosen action to lead to a state in which a goal ϕ is satisfied. To
capture the latter, they annotate each action a with a condition Ann(a)
that represents the expected (non-failure) behavior of the action. Condition
Ann(a), generally speaking, is different from the goal ϕ. For example, goal
ϕ might be to drive from point A to point B, while condition Ann(a) might
represent non-failure of brakes if action a is “pushing the breaks”. By failure,
they mean any execution where an action does not achieve the expected
(“annotated”) effect. They define the probability of non-failure (“ok”) of
action a in state s as

Pok(s, a) =
∑

s′Ann(a)

P (s, a, s′). (2)

In this article we modify Novák and Jamroga’s approach in two ways. First,
we generalize it from a single-agent to a multi-agent setting. In such a setting,
“probability of non-failure” function Pok(s, δ) depends on a complete action
profile δ of all agents and the state s of the system in which these actions
are executed. Second, we simplify their approach by assuming that function
Pok(s, δ) is given as a part of the game specification rather than defined by
an equation similar to (2). We refer to such games as games with stochastic
failures. Unlike Novák and Jamroga, we prove completeness results for our
logical system.
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1.3. Outline
The rest of the article is organized as follows. In the next section we

discuss the games with stochastic transitions. After defining the formal lan-
guage of coalition power with probabilities, we introduce the games with
stochastic transitions and discuss the properties of these games expressible
in our language. We observe that the properties of games with stochastic
transitions expressible in this language are very complicated and conclude,
based on the existing works on the logics of probabilities, that the complete
axiomatization of these properties is problematic. In Section 3, we define se-
mantics of the same language based on the games with stochastic failures and
give a sound and strongly complete axiomatization of the properties of the
coalition power for this setting. We also show that strong completeness does
not hold for a language that allows empty coalition. Section 5 concludes.

2. Games with Stochastic Transitions

In this section we define the formal system and semantics of the logic of
coalition power in the games with stochastic transitions and discuss examples
of properties that can be captured in this language. The logical system for
games with stochastic failures is introduced in Section 3. It uses the same
language Φ as the logical system from the current section.

2.1. Syntax and Semantics
We assume a fixed finite set of agents A and a fixed set of propositional

variables. A coalition is any nonempty subset of A. We discuss empty coali-
tions in Section 3.5.

Definition 1. Let Φ be the minimal set of formulae such that

1. v ∈ Φ for each propositional variable v,
2. ¬ϕ, ϕ→ ψ ∈ Φ for all formulae ϕ, ψ ∈ Φ,
3. [C]pϕ ∈ Φ for each coalition C, each real number p ∈ [0, 1], and each

formula ϕ ∈ Φ.

In other words, Φ is the language specified by the following grammar

ϕ := v | ¬ϕ | ϕ→ ϕ | [C]pϕ.

We assume that conjunction ∧, disjunction ∨, and Boolean constants true >
and false ⊥ are defined in our language in the standard way. Let XY be the
set of all functions from set Y to set X.
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Definition 2. A tuple (S,D, P, π) is a game with stochastic transitions, if

1. S is a finite set (of states),

2. D is a nonempty set (domain of actions),

3. P is a function from set S ×DA × S into set [0, 1] such that∑
s′∈S

P (s, δ, s′) = 1

for each state s ∈ S and each function δ ∈ DA,

4. π is a function from propositional variables into subsets of S.

Informally, in each state s of the game each agent chooses an action from
the domain of the actions D. These choices are captured by a complete
action profile δ ∈ DA. After the choices are made, the game transitions from
the current state s to a random new state s′. The probability of transition to
a specific new state s′ is P (s, δ, s′). As usual, valuation function π specifies
which propositional variables are true in each state. Note that our games with
stochastic transitions are Markovian because probability P (s, δ, s′) depends
only on the current state s, but not on the previous states of the system.

The formal semantics of our logical system for games with stochastic
transitions is given in the definition below:

Definition 3. For any state s ∈ S of a game with stochastic transitions
(S,D, P, π) and any formula ϕ ∈ Φ, the satisfiability relation s  ϕ is defined
recursively as follows:

1. s  v if s ∈ π(v), for any propositional variable v,

2. s  ¬ϕ if s 1 ϕ,

3. s  ϕ→ ψ if s 1 ϕ or s  ψ,

4. s  [C]pϕ when there is an action profile δ ∈ DC of coalition C such
that for any complete action profile δ′ ∈ DA of the set of all agents A,
if δ ⊆ δ′, then

∑
tϕ P (s, δ′, t) ≥ p.

In the above definition, δ ⊆ δ′ means that, as a set of pairs, function δ ∈ DC

is a subset of function δ′ ∈ DA. In other words, functions δ and δ′ are equal
on the set C, where both of them are defined.
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2.2. Cooperation Axiom for Games with Stochastic Transitions

One might suggest that the following form of the Cooperation axiom (1)
holds for the games with stochastic transitions:

[C]p(ϕ→ ψ)→ ([D]qϕ→ [C ∪D]pqψ). (3)

Unfortunately, this is true only if events t  ϕ → ψ and t  ϕ are inde-
pendent for any given initial state s and complete action profile δ′. Indeed,
consider an example of a game in which Alice and Bob choose an action and
then, no matter what actions have been chosen, they throw a coin. The coin
lands heads up with probability 0.5 and tails up with probability 0.5 as well.
Let H and T be statements “coin landed heads up” and “coin landed tails
up” respectively. Note that no matter what the actions are, statement H will
be false with probability 0.5. Thus, statement H → H ∧ T will be true with
probability 0.5. Hence, Alice has a strategy (any action would do) to achieve
H → H ∧ T with probability 0.5. In our notations, [Alice]0.5(H → H ∧ T ).
Similarly, [Bob]0.5H. At the same time, statement [Alice,Bob]ε(H ∧ T ) is
false for any positive value ε because statements H and T can not be both
true in the same state. This provides a counterexample for formula (3).

There are versions of the Cooperation axiom that hold for games with
stochastic transitions. For example, the following principle is universally
true:

[C]0.9(ϕ→ ψ)→ ([D]0.9ϕ→ [C ∪D]0.8ψ),

Indeed, assumption [C]0.9(ϕ → ψ) means, see item 4 of Definition 3, that
once an initial state s and a complete action profile δ′ are fixed, statement
t  ϕ→ ψ will be false for at most 10% of outcomes t. Similarly, statement
t  ϕ will be false for at most 10% of outcomes t. Thus, both of these
statements will be true for at least 80% of outcomes. Therefore, statement
ψ will be true in at least 80% of outcomes. The same argument can justify
the following form of the Cooperation axiom:

[C]p(ϕ→ ψ)→ ([D]qϕ→ [C ∪D]max{0,p+q−1}ψ). (4)

Note that if p + q ≤ 1, then the conclusion [C ∪ D]0ψ is vacuously true.
Hence, this formula captures a non-trivial property of strategies only when
p + q > 1. In the next section we give another example of a non-trivial
property of strategies in games with stochastic transitions. That property,
see Theorem 1, is non-trivial even for small values of the probabilities.
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2.3. An Example

In this section we give a non-trivial example of a property of games with
stochastic transitions. It is captured by the following theorem:

Theorem 1. For any state s ∈ S of a stochastic game (S,D, P, π), any
coalition C, and any formulae ϕ, ψ, σ ∈ Φ,

s  [A]p+q+r(ϕ ∨ ψ ∨ σ)→ [A]2p(ϕ ∨ ψ) ∨ [A]2q(ψ ∨ σ) ∨ [A]2r(ϕ ∨ σ).

Recall that A is the set of all agents. The proof of the theorem is based on
the two lemmas below. The first lemma follows from item 4 of Definition 3.

Lemma 1. s  [A]pϕ iff there is a complete action profile δ ∈ DA such that∑
tϕ P (s, δ, t) ≥ p. 2

The second lemma can be shown using a much more general principle of
Rényi [49, page 38, Theorem 11]. To keep the article self-contained, we prove
this lemma directly.

Lemma 2. For arbitrary events B,C, and D in an arbitrary probability
space with probability function P,

P(B ∪ C) + P(C ∪D) + P(B ∪D) ≥ 2 · P(B ∪ C ∪D).

Proof. Since probability of the union of any two events is always no more
than the sum of the probabilities of these events,

P(C \B) + P(D \B) ≥ P((C \B) ∪ (D \B)).

Thus, because (C \B) ∪ (D \B) = (C ∪D) \B),

P(C \B) + P(D \B) ≥ P((C ∪D) \B).

Hence, by adding P((C ∪D) \B) to both sides of the inequality,

P(C \B) + P(D \B) + P((C ∪D) \B) ≥ 2 · P((C ∪D) \B).

At the same time, because P((C ∪D) ∩B) ≥ 0,

P(B) + P(B) + P((C ∪D) ∩B) ≥ 2 · P(B).
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Then, by adding the two inequalities above,

[P(C \B) + P(B)] + [P(D \B) + P(B)] + [P((C ∪D) \B) +

P((C ∪D) ∩B)] ≥ 2 · [P((C ∪D) \B) + P(B)].

Hence, since the sum of probabilities of two disjoint events is equal to the
probability of the union, P(B∪C)+P(D∪B)+P(C∪D) ≥ 2·P(C∪D∪B). 2

We are now ready to prove Theorem 1.

Proof. By Lemma 1, assumption s  [A]p+q+r(ϕ ∨ ψ ∨ σ) implies that there
is a complete action profile δ ∈ DA such that

∑
tϕ∨ψ∨σ P (s, δ, t) ≥ p+ q+ r.

Hence, by Lemma 2,∑
tϕ∨ψ

P (s, δ, t) +
∑
tψ∨σ

P (s, δ, t) +
∑
tϕ∨σ

P (s, δ, t) ≥ 2
∑

tϕ∨ψ∨σ

P (s, δ, t)

≥ 2(p+ q + r).

Thus, at least one of the following inequalities holds∑
tϕ∨ψ

P (s, δ, t) ≥ 2p,∑
tψ∨σ

P (s, δ, t) ≥ 2q,∑
tϕ∨σ

P (s, δ, t) ≥ 2r.

Then, by Lemma 1, one of the following statements holds,

s  [A]2p(ϕ ∨ ψ),

s  [A]2q(ψ ∨ σ),

s  [A]2r(ϕ ∨ σ).

Therefore, s  [A]2p(ϕ ∨ ψ) ∨ [A]2q(ψ ∨ σ) ∨ [A]2r(ϕ ∨ σ). 2

2.4. From Stochastic Transitions to Stochastic Failures
Marc Pauly’s Cooperation axiom (1) captures a property of the interplay

among strategic powers of different coalitions. As we have observed, varia-
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tion (4) of this axiom holds for the games with stochastic transitions. A more
complicated example of a property of such games is captured by Theorem 1.
Note that the statement of Theorem 1 is more about properties of probabil-
ities than strategies. Logical systems for reasoning about just probabilities
have been proposed before.

Heifetz and Mongin proposed a sound and complete axiomatization of a
logic that uses modalities Mpϕ and Lpϕ that stand for “formula ϕ is true
with probability at most p” and “formula ϕ is true with probability at least
p” respectively [50]. Their axiomatization is very complex. For example, for
arbitrary formulae ϕ1, . . . , ϕm, ψ1, . . . , ψn, their B axiom has the form:max(m,n)∧

k=1

(
ϕ(k) ↔ ψ(k)

)→
((

m∧
i=1

Lαi
ϕi

)
∧

(
n−1∧
j=1

Mβjψj

)
→L∑m

i=1 αi−
∑n−1

j=1 βj
ψn

)
,

where ϕ(k) and ψ(k) are formulae∨
1≤`1<···<`k≤m

(ϕ`1 ∧ · · · ∧ ϕ`k)

and ∨
1≤`1<···<`k≤n

(ψ`1 ∧ · · · ∧ ψ`k)

respectively.
Abadi and Halpern have shown that the first order probability logic is

Π2
1-complete and, thus, does not have a finitary axiomatization [51]. Ogn-

janović and Raškovic gave an axiomatization for this logic using an infinitary
inference rule [52].

There have been many attempts in the literature to develop logical sys-
tems that circumvent the described-above complexity of probability logics.
Fagin, Halpern, and Megiddo proposed a sound and complete modal logic-
like system without nested modalities that describes properties of inequalities
among probabilities of different events [53]. The complexity of their axiom-
atization is hidden in the Ineq axiom that contains “all instances of valid
formulas about linear inequalities”.
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Kokkinis, Ognjanović, and Studer added probability modality to the logic
of justifications [54]. However, their definition of a probability space allows
algebras of events that are closed only with respect to finite unions and finite
intersections. The standard definition of a probability space requires the
set of events to be closed with respect to countable unions and countable
intersections [55, p.10].

Others suggested to replace probability with a probability-like uncertainty
parameter whose meaning is not defined using a probability space. The ex-
isting literature on this approach includes papers on possibilistic logic [56],
quantitative modal logic [57], and graded logic of justifications [58, 59]. An-
other non-probabilistic way to interpret uncertainty is through confidence
intervals in a metric space [60, 61].

Given the complexity of probability logics and of the example captured by
Theorem 1, it is clear that properties of games with stochastic transitions are
unlikely to have a simple axiomatization that could be described as a natural
extension of Marc Pauly’s original logic of coalition power. In the rest of this
article we focus on a different approach to probabilities and coalition power
that goes back to the described earlier Novák and Jamroga [48] proposal to
distinguish probability of achieving a goal from probability of non-failure.

Unlike Novák and Jamroga, we treat probability of non-failure Pok as a
basic function which is given as a part of the game specification. To do this,
we modify Definition 2 of games with stochastic transitions into Definition 4
of games with stochastic failures, which is given below. We use the latter
games to give formal semantics of modality “coalition C has a strategy that
guarantees that system will not fail with probability at least p and, if the
system does not fail, statement ϕ will be true”. Our technical results are
soundness and strong completeness of a logical system capturing the proper-
ties of this modality. We also show that a strongly complete logical system
does not exist if the language of the system allows the empty coalition.

3. Games with Stochastic Failures

This section contains the main contribution of this article. It proposes a
strongly complete logical system for coalition power in games with stochastic
failures.

3.1. Semantics

Definition 4. A tuple (S,D, Pok,M, π) is game with stochastic failures, if
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1. S is a set (of states),

2. D is a nonempty set (domain of actions),

3. Pok is a function from set S ×DA into interval [0, 1],

4. M ⊆ S×DA×S, where, for each state s ∈ S and each complete action
profile δ ∈ DA, there is at least one state s′ ∈ S such that (s, δ, s′) ∈M ,

5. π is a function from propositional variables into subsets of S.

Note that unlike Definition 2, we no longer assume that set S is finite.
This is because item 3 of Definition 2 includes a summation over the set
of all states S and Definition 4 does not. In addition, a summation over a
subset of S is present in Definition 3 and it is not present in the definition of
satisfiability for games with stochastic failures that we give in Definition 5
below.

In this section we only discuss global failures of the game. In other words,
if the game fails, then it terminates and does not reach any state. Informally,
a transition of such a game from a state s could be viewed as three-step
process. First, agents choose actions that determine an action profile δ.
Second, the game is terminated with probability 1−Pok(s, δ) due to a failure.
Third, if the game survived on step two, then the game nondeterministically
transitions into a next state s′ such that (s, δ, s′) ∈ M . Note that the third
step is nondeterministic, but we do not assign any probability distribution to
it. Assigning such a distribution would mean adding stochastic transitions
as discussed in Section 2. Item 4 of Definition 4 requires that there is at least
one state s′ such that (s, δ, s′) ∈ M . In other words, the game will have at
least one possible next state s′ after it survives step two.

d1 d2 d3

Pok outcome Pok outcome Pok outcome

d1 0.6 p, q 0.7 p, q 0.8 p,¬q
d2 0.5 p, q 0.9 p, q 0.1 p,¬q
d3 0.7 ¬p, q 0.1 ¬p, q 0.2 ¬p,¬q

Table 1: A Game with Stochastic Failures.

As an example, consider the two-agent game with stochastic failures de-
picted in Table 1. The domain of actions D in this game is {d1, d2, d3}. Thus,
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the game has nine complete action profiles that we denote as pairs of actions:
{(x, y) | x, y ∈ D}. The set of all states S of this game consists of the initial
state s0 and nine outcome states. We assume that this game is deterministic.
Thus, there is a unique state corresponding to each complete action profile.
We use the same pairs {(x, y) | x, y ∈ D} to denote the outcomes of the
corresponding complete action profiles. That is, from state s0 under action
profile (x, y) the game transitions to outcome state (x, y). More formally,
M = {(s0, (x, y), (x, y)) | x, y ∈ D}. The values of function Pok are shown
in Table 1. For example, Pok(s0, (d2, d1)) = 0.5. Valuation function π is also
specified in Table 1. For example, the table shows p,¬q for outcome (d2, d3).
This means that (d2, d3) ∈ π(p) and (d2, d3) /∈ π(q).

Next is the key definition of this section. Its item 4 formally specifies the
semantics of the modality [C]p for games with stochastic failures.

Definition 5. For any game with stochastic failures (S,D, Pok,M, π), any
state s ∈ S, and any formula ϕ ∈ Φ, satisfiability relation s  ϕ is defined
recursively as follows:

1. s  p if s ∈ π(p),

2. s  ¬ϕ if s 1 ϕ,

3. s  ϕ→ ψ if s 1 ϕ or s  ψ,

4. s  [C]pϕ when there is an action profile δ ∈ DC of coalition C such
that for any complete action profile δ′ ∈ DA if δ ⊆ δ′, then

(a) Pok(s, δ
′) ≥ p and

(b) for any state s′ ∈ S, if (s, δ′, s′) ∈M , then s′  ϕ.

Informally, s  [C]pϕ means that coalition C has a strategy that guaran-
tees condition ϕ in each outcome and which is guaranteed not to fail with
probability at least p no matter what are the actions of the other agents.

For example, in the game depicted in Table 1, the first agent, whom we
refer to as agent a, has two different actions to achieve statement p: action
d1 and action d2. We do not consider the third action, d3, because it does not
guarantee that condition p will be achieved. Action d1 guarantees that the
system will not fail with probability at least 0.6 because 0.6 is the smallest
number in the first row of that table. Similarly, action d2 guarantees that the
system will not fail with probability at least 0.5. Thus, agent a has a strategy
that achieves p and will not fail with probability at least 0.6 no matter what
is the action of the second player. We denote this by [a]0.6p. Note that 0.6
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is maxmin value in the table for all rows (actions of agent a) that guarantee
condition p.

In the same game, the second agent, whom we refer to as agent b, has
two actions that guarantee condition q: action d1 and action d2. The first
of these actions guarantees non-failure with probability 0.5 and the second
with probability only 0.1. Thus, [b]0.5q. Note that 0.5 is maxmin value in the
table for all columns (actions of agent b) that guarantee condition q.

If agents a and b decide to use their maxmin actions for achieving p and
q respectively, then they will achieve condition p∧ q with probability of non-
failure at least 0.6. We write this as [a, b]0.6(p ∧ q). Observe that in our
example agents a and b will do even better if they deviate from their respec-
tive maxmin actions. If they both use action d2, then they are guaranteed
to achieve p ∧ q and not to fail with probability 0.9. Hence, [a, b]0.9(p ∧ q).

3.2. Logical Systems

In this section we introduce axioms that describe the properties of coali-
tion power modality [C]pϕ in games with stochastic failures. In addition to
propositional tautologies in language Φ, each system contains the following
axioms:

1. Monotonicity: [C]pϕ→ [C]qϕ, where q ≤ p,

2. Unachievability of Falsehood: ¬[C]p⊥,

3. Cooperation: [C1]p(ϕ→ ψ)→ ([C2]qϕ→ [C1 ∪ C2]max{p,q}ψ),
where C1 ∩ C2 = ∅.

The Monotonicity axiom says that if a coalition C can achieve goal ϕ
with probability at least p, then coalition C can achieve ϕ with probability q,
where q ≤ p. The Unachievability of Falsehood axiom says that no coalition
can achieve falsehood.

The Cooperation axiom generalizes the original Marc Pauly axiom (1).
Informally, it says that two coalitions can combine their strategies to achieve
a common goal. Recall that the assumption that coalitions C1 and C2 are
disjoint is important because a hypothetical common agent of these two
coalitions might be required to choose different actions under strategies of
these two coalitions.

Our version of the Cooperation axiom adds probability of non-failure
subscript to the original version of this axiom. To understand our form of
this axiom, consider again the example of a stochastic game with failures
depicted in Table 1. Recall from our earlier discussion that [a]0.6p and [b]0.5q.
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In other words, if agent a is using her maxmin action d1, then she will achieve
condition p with probability of non-failure 0.6 no matter what action agent
b chooses. Similarly, if agent b is using his maxmin action d1, then he will
achieve condition q with probability of non-failure 0.5 no matter what action
agent a chooses. If agents a and b use their respective maxmin actions,
then they will achieve condition p ∧ q with probability of non-failure of at
least max{0.6, 0.5} = 0.6. Note that the probability is the maximum of
the two probabilities, not the minimum, because action of agent a alone
guarantees probability of non-failure to be at least 0.6. The Cooperation
axiom above captures this property for an arbitrary two disjoint coalitions C
and D. This axiom states that the combined coalition has an action profile
to achieve condition ψ with probability at least max{p, q}. In a specific game
the combined coalition can avoid failure with even higher probability. Indeed,
as we discussed earlier, [a, b]0.9(p ∧ q) for the game depicted in Table 1.

In this article we assume that, generally speaking, stochastic failures are
not independent. If they would be independent and the set of all agents A
were finite, then function Pok(s, δ) would be equal to the product of proba-
bilities of individual actions not to fail:

Pok(s, δ) =
∏
a∈A

pa(s, δ(a)),

where pa(s, d) is the probability of action d not to fail in state s when executed
by an agent a. In this case, the Cooperation axiom would have form:

[C1]p(ϕ→ ψ)→ ([C2]qϕ→ [C1 ∪ C2]pqψ), (5)

where C1∩C2 = ∅. Note that in this case one can define a “resource” param-
eter r to be the logarithm of the probability not to fail: r = log2 p. Using this
“resource” instead of original probability as a subscript, formula (5) could
be written as:

[C1]r1(ϕ→ ψ)→ ([C2]r2ϕ→ [C1 ∪ C2]r1+r2ψ), (6)

because log(pq) = log p + log q. Formula (6) is the form of the Coopera-
tion axiom in the Resource Bounded Coalition Logic (RBCL) [15]. In other
words, the general properties of coalition strategies in stochastic games are
described by our logical system. But in the case of a special class of games,
where stochastic failures of different agents are independent, the properties
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are described by a variation of the RBCL with logarithm of the probability
of non-failure acting as a “resource”. We say “a variation” because the orig-
inal version of RBCL allows only non-negative integer values of the resource
parameters. In our case, logarithm of a probability is a negative real number
or negative infinity.

We write ` ϕ if formula ϕ ∈ Φ is provable from the above axioms using
the Modus Ponens, the Necessitation, and the Monotonicity inference rules:

ϕ, ϕ→ ψ

ψ

ϕ

[C]0ϕ

ϕ→ ψ

[C]pϕ→ [C]pψ
.

Notice that the Necessitation inference rule with positive subscript is not,
generally speaking, valid. Indeed, formula > is universally true but coalition
C may not have a strategy that guarantees the survival of the system with a
positive probability. Thus, [C]p> is not a universally true formula for p > 0.

We write X ` ϕ if formula ϕ ∈ Φ is provable from the theorems of our
logical system and a set of additional axioms X using only the Modus Ponens
inference rule.

The next lemma is a well-known “deduction” lemma. We reproduce its
proof here to keep the article self-contained.

Lemma 3 (deduction). If X,ϕ ` ψ, then X ` ϕ→ ψ.

Proof. Suppose that sequence ψ1, . . . , ψn is a proof from set X ∪{ϕ} and the
theorems of our logical system that uses the Modus Ponens inference rule
only. In other words, for each k ≤ n, either

1. ` ψk, or

2. ψk ∈ X, or

3. ψk is equal to ϕ, or

4. there are i, j < k such that formula ψj is equal to ψi → ψk.

It suffices to show that X ` ϕ → ψk for each k ≤ n. We prove this by
induction on k through considering the four cases above separately.

Case 1: ` ψk. Note that ψk → (ϕ → ψk) is a propositional tautology, and
thus, is an axiom of our logical system. Hence, ` ϕ → ψk by the Modus
Ponens inference rule. Therefore, X ` ϕ→ ψk.

Case 2: ψk ∈ X. Then, X ` ϕ→ ψk similarly to the previous case.
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Case 3: formula ψk is equal to ϕ. Thus, ϕ→ ψk is a propositional tautology.
Therefore, X ` ϕ→ ψk.

Case 4: formula ψj is equal to ψi → ψk for some i, j < k. Thus, by the
induction hypothesis, X ` ϕ → ψi and X ` ϕ → (ψi → ψk). Note that
formula (ϕ → ψi) → ((ϕ → (ψi → ψk)) → (ϕ → ψk)) is a propositional
tautology. Therefore, X ` ϕ→ ψk by applying the Modus Ponens inference
rule twice. 2

Lemma 4 (Lindenbaum). Any consistent set of formulae can be extended
to a maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma applies here [62, Proposi-
tion 2.14]. However, since the formulae in our logical system use real numbers
in subscript, the set of formulae is uncountable. Thus, the proof of Linden-
baum’s lemma in our case relies on the Axiom of Choice. 2

We conclude this section by giving an example of a formal derivation in
our logical system. This result is used later in the proof of the completeness.

Lemma 5. If C ⊆ D, then ` [C]pϕ→ [D]pϕ.

Proof. If C = D, then ` [C]pϕ→ [D]pϕ because formula [C]pϕ→ [D]pϕ is a
propositional tautology.

Suppose now that C ( D. Thus set D\C is not empty. Note that ϕ→ ϕ
is a propositional tautology. Thus, ` [D \ C]0(ϕ → ϕ) by the Necessitation
inference rule. At the same time, because (D \ C) ∩ C = ∅, the following
formula is an instance of the Cooperation axiom:

[D \ C]0(ϕ→ ϕ)→ ([C]pϕ→ [(D \ C) ∪ C]max{0,p}ϕ).

Hence, by the Modus Ponens inference rule,

` [C]pϕ→ [(D \ C) ∪ C]max{0,p}ϕ.

Then, ` [C]pϕ→ [D]pϕ, because C ⊆ D and 0 ≤ p. 2
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3.3. Soundness

In this section we prove the soundness of each of our axioms as a separate
lemma. The soundness of our system is stated in the end of the section as
Theorem 2.

Lemma 6. For any game with stochastic failures (S,D, Pok,M, π), any state
s ∈ S, any coalition C, any formula ϕ ∈ Φ, and any real numbers p, q such
that 0 ≤ q ≤ p ≤ 1, if s  [C]pϕ, then s  [C]qϕ.

Proof. By Definition 5, assumption s  [C]pϕ implies that there is an action
profile δ1 ∈ DC such that for any complete action profile δ′ ∈ DA if δ1 ⊆ δ′,
then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S if (s, δ′, s′) ∈M , then s′  ϕ.

Note that Pok(s, δ
′) ≥ p ≥ q by assumption q ≤ p of the lemma. Therefore,

s  [C]qϕ by Definition 5. 2

Lemma 7. s 1 [C]p⊥ for any state s ∈ S of a game with stochastic failures
(S,D, Pok,M, π), any coalition C, and any p ∈ [0, 1].

Proof. Suppose that s  [C]p⊥. Thus, by Definition 5, there is an action
profile δ ∈ DC such that for any complete action profile δ′ ∈ DA if δ ⊆ δ′,
then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S if (s, δ′, s′) ∈M , then s′  ⊥.

Recall that set D is not empty by item 2 of Definition 4. Let d0 be an
arbitrary element of this set. Consider the complete action profile

δ′(a) =

{
δ(a), if a ∈ C,
d0, otherwise.

Then, δ ⊆ δ′. By item 4 of Definition 4, there exists state s′ ∈ S such that
(s, δ′, s′) ∈ M . Thus, s′  ⊥ by item 2 above, which contradicts the defini-
tion of ⊥ and Definition 5. 2
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Lemma 8. For any game with stochastic failures (S,D, Pok,M, π), any state
s ∈ S, any coalitions C1 and C2, any formulae ϕ, ψ ∈ Φ, and any real
numbers p, q ∈ [0, 1], if s  [C1]p(ϕ→ ψ), s  [C2]qϕ, and C1∩C2 = ∅, then
s  [C1 ∪ C2]max{p,q}ψ.

Proof. By Definition 5, assumption s  [C1]p(ϕ → ψ) implies that there is
an action profile δ1 ∈ DC1 such that for any complete action profile δ′ ∈ DA,
if δ1 ⊆ δ′, then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S, if (s, δ′, s′) ∈M , then s′  ϕ→ ψ.

Additionally, by Definition 5, assumption s  [C2]qϕ implies that there is an
action profile δ1 ∈ DC2 such that for any complete action profile δ′ ∈ DA if
δ2 ⊆ δ′, then

1. Pok(s, δ
′) ≥ q and

2. for any state s′ ∈ S if (s, δ′, s′) ∈M , then s′  ϕ.

Let strategy profile δ of coalitions C1 ∪ C2 be defined as

δ(a) =

{
δ1(a), if a ∈ C1,

δ2(a), if a ∈ C2.
(7)

Strategy profile δ is well-defined because coalitions C1 and C2 are disjoint by
an assumption of the lemma.

Consider an arbitrary complete strategy profile δ′ such that δ ⊆ δ′. Note
that

δ1 ⊆ δ ⊆ δ′, (8)

δ2 ⊆ δ ⊆ δ′ (9)

by equation (7) and the assumption δ ⊆ δ′. By Definition 5, it suffices to
show that

1. Pok(s, δ
′) ≥ max{p, q} and

2. for any state s′ ∈ S if (s, δ′, s′) ∈M , then s′  ψ.

First we show that Pok(s, δ
′) ≥ max{p, q}. Indeed, Pok(s, δ

′) ≥ p by the
choice of action profile δ1 and due to equation (8). Similarly, Pok(s, δ

′) ≥ q by
the choice of action profile δ2 and equation (9). Thus, Pok(s, δ

′) ≥ max{p, q}.
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Finally, consider any state s′ such that (s, δ′, s′) ∈M . We will show that
s′  ψ. Note that s′  ϕ → ψ by the choice of action profile δ1 and equa-
tion (8). Similarly, s′  ϕ by the choice of action profile δ2 and equation (9).
Therefore, s′  ψ by Definition 5. 2

The strong soundness theorem for our logical system with respect to the
semantics described above follows from Lemma 8, Lemma 6, and Lemma 7.

Theorem 2. For any state s ∈ S of a game (S,D, Pok,M, π) with stochastic
failures, if X ` ϕ, and s  χ for each formula χ ∈ X, then s  ϕ. 2

3.4. Completeness

In this section we prove strong completeness of our logical system with
respect to the semantics of games with stochastic failures. This result is
stated later in this section as Theorem 3. We start the proof by defining the
canonical game with stochastic failures (S,D, Pok,M, π).

Definition 6. S is the set of all maximal consistent sets of formulae.

Definition 7. D is the set of all pairs (ϕ, p) where ϕ ∈ Φ and p is an
arbitrary real number.

Informally, by choosing the action (ϕ, p), the agent is requesting the sys-
tem to survive with probability at least p and formula ϕ to be true at the
next state. The canonical action aggregation mechanism, that we define later,
might grant or ignore this request. In particular, the mechanism ignores the
request if p /∈ [0, 1].

Next we define the probability Pok(s, δ) of the system to survive in state
s under action profile δ. For each [C]pϕ ∈ s we want the system to survive
with probability at least p if all members of coalition C choose action (ϕ, p).
Thus, we define Pok(s, δ) to be the maximum among such p. In the definition
below we assume that the maximum of the empty set is equal to 0.

Definition 8. Pok(s, δ) = max{p | [C]pϕ ∈ s,∀a ∈ C(δ(a) = (ϕ, p))}.

Lemma 9. For each state s ∈ S and each profile δ ∈ DA, value Pok(s, δ) is
well-defined and Pok(s, δ) ∈ [0, 1].
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Proof. Consider set X = {p | [C]pϕ ∈ s,∀a ∈ C(δ(a) = (ϕ, p))}. Note that
X ⊆ [0, 1] by Definition 1. To prove that value Pok(s, δ) is well-defined by
Definition 8, it suffices to show that set X is finite. Recall that set of all
agents A is finite. Thus, set {p | ∃a ∈ A ∃ϕ ∈ Φ (δ(a) = (ϕ, p))} is finite.
Therefore, set X is finite because any coalition C in a formula [C]pϕ ∈ Φ is
nonempty. 2

The canonical action aggregation mechanism M guarantees that if the
system is in state s, [C]pϕ ∈ s, and all members of coalition C choose action
(ϕ, p), then ϕ ∈ s′, where s′ is the next state of the system.

Definition 9. (s, δ, s′) ∈M if {ϕ | [C]pϕ ∈ s,∀a ∈ C(δ(a) = (ϕ, p))} ⊆ s′.

According to Definition 4, we need to prove that for each state s ∈ S and
each complete action profile δ ∈ DA, there is at least one state s′ ∈ S such
that (s, δ, s′) ∈M . We will show this in Lemma 11.

Definition 10. π(v) = {s ∈ S | v ∈ s}.

This concludes the definition of the canonical game with stochastic failures
(S,D, Pok,M, π).

The next lemma is the key lemma in the proof of the completeness. It
shows that if ¬[C]pϕ ∈ s, then in state s coalition C has no strategy to
achieve ϕ in the next state while surviving with probability at least p.

Lemma 10. For each state s ∈ S, each formula ¬[C]pϕ ∈ s, and each action
profile δ ∈ DC, there is a complete action profile δ′ ∈ DA such that δ ⊆ δ′

and one of the following is true

1. Pok(s, δ
′) < p or

2. there is a state s′ ∈ S where (s, δ′, s′) ∈M and ¬ϕ ∈ s′.

Proof. Consider function δ′ ∈ DA such that

δ′(a) =

{
δ(a), if a ∈ C,
(>,−1), otherwise.

(10)

Suppose that
Pok(s, δ

′) ≥ p. (11)
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Consider set

X0 = {¬ϕ} ∪ {ψ | [B]qψ ∈ s,∀a ∈ B(δ′(a) = (ψ, q))}.

First, we prove that set X0 is consistent. Suppose the opposite, thus there
must exist formulae [B1]q1ψ1, . . . , [Bn]qnψn ∈ s such that

∀i ≤ n ∀a ∈ Bi (δ′(a) = (ψi, qi)) (12)

ψ1, . . . , ψn ` ϕ. (13)

Without loss of generality, we can assume that formulae ψ1, . . . , ψn are
distinct. Note that sets B1, . . . , Bn are pairwise disjoint because of state-
ment (12). Due to Definition 8,

q1, . . . , qn ≤ Pok(s, δ
′). (14)

Case 1: n = 0. Thus, Pok(s, δ
′) = 0 by Definition 8. Hence, p = 0 by

assumption (11) and because p ≥ 0 by Definition 1. Note also that ` ϕ by
statement (13) because n = 0. Thus, ` [C]pϕ by the Necessitation inference
rule and equation p = 0. Then, [C]pϕ ∈ s by the maximality of set s. Hence,
¬[C]pϕ /∈ s because set s is consistent. This contradicts the assumption of
the lemma.
Case 2: n > 0. Then, by Definition 8, we can suppose that there is an
integer m such that 1 ≤ m ≤ n and

qm = Pok(s, δ
′). (15)

Furthermore, we can assume that there is n′ ≤ n such that Bi ⊆ C for each
i ≤ n′ and Bi * C for each i > n′.

Let us first show that m ≤ n′. Indeed, suppose that there is an agent
a0 ∈ Bm \ C. Thus, δ′(a0) = (>,−1) by equation (10). Hence, qm = −1 due
to equation (12). Thus, Pok(s, δ

′) = −1 by equation (15), which contradicts
Lemma 9. Therefore, m ≤ n′.

Next, note that for each i > n′ we have ψi = > because Bi * C and due
to equality (10) and equality (12). Hence, ψ1, . . . , ψn′ ` ϕ by statement (13).
By Lemma 3 applied n′ times,

` ψ1 → (ψ2 → . . . (ψn′ → ϕ) . . . ).
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Note that n′ 6= 0 because 1 ≤ m ≤ n′. So, by the Monotonicity inference
rule,

` [B1]q1ψ1 → [B1]q1(ψ2 → . . . (ψn′ → ϕ) . . . )).

By the Modus Ponens inference rule,

[B1]q1ψ1 ` [B1]q1(ψ2 → . . . (ψn′ → ϕ) . . . )).

By the Cooperation axiom and the Modus Ponens rule,

[B1]q1ψ1, [B2]q2ψ2 ` [B1 ∪B2]max{q1,q2}(ψ3 → . . . (ψn′ → ϕ) . . . )).

By repeating the previous step n− 2 more times,

[B1]q1ψ1, . . . , [Bn′ ]qn′ψn′ ` [B1 ∪ · · · ∪Bn′ ]max{q1,...,qn′}ϕ.

Thus, by the choice of formulae [B1]q1ψ1, . . . , [Bn′ ]qn′ψn′ ,

s ` [B1 ∪ · · · ∪Bn′ ]max{q1,...,qn′}ϕ.

Then, by Lemma 5 and because B1, . . . , Bn′ ⊆ C,

s ` [C]max{q1,...,qn′}ϕ.

Recall that m ≤ n′. Thus, max{q1, . . . , qn′} = Pok(s, δ
′) by inequality (14)

and equation (15). Hence, s ` [C]Pok(s,δ′)ϕ. Thus, s ` [C]pϕ by the Mono-
tonicity axiom and assumption (11). Then, ¬[C]pϕ /∈ s due to consistency
of set s, which contradicts the assumption of the lemma. Therefore, set X0

is consistent. By Lemma 4, there is a maximal consistent extension s′ of set
X0. Note that ¬ϕ ∈ s′ by the choice of set X0.

To show that (s, δ′, s′) ∈ M , consider any formula [B]qψ ∈ s such that
δ′(a) = (ψ, q) for each a ∈ B. By Definition 9, it suffices to show that ψ ∈ s′,
which is true due to the choice of set X0. 2

The next lemma establishes that the defined earlier canonical game with
stochastic failures satisfies the property from item 4 of Definition 4.

Lemma 11. For each state s ∈ S and each complete action profile δ ∈ DA,
there is a state s′ ∈ S such that (s, δ, s′) ∈M .

Proof. Consider an arbitrary state s ∈ S and an arbitrary complete action
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profile δ ∈ DA. By the Unachievability of Falsehood axiom, ` ¬[A]Pok(s,δ)/2⊥.
Thus, ¬[A]Pok(s,δ)/2⊥ ∈ s due to the maximality of set s. Hence, by Lemma 10,
there exists δ′ ∈ DA such that δ =A δ

′ and one of the following is true

1. Pok(s, δ
′) < Pok(s, δ)/2 or

2. there is s′ ∈ S where (s, δ′, s′) ∈M and ¬⊥ ∈ s′.

Condition δ =A δ′ implies that δ = δ′, because A is the set of all agents.
Thus, statement Pok(s, δ

′) < Pok(s, δ)/2 is false because, by Definition 4,
the value Pok(s, δ

′) is non-negative. Then, condition 1 above is false. Hence,
condition 2 is true. Therefore, there exists s′ ∈ S such that (s, δ, s′) ∈M . 2

The following lemma shows that if [C]pϕ ∈ s, then in state s coalition C
has a strategy that guarantees that ϕ will be achieved in the next state and
that the system will survive with probability at least p.

Lemma 12. For any state s ∈ S and any formula [C]pϕ ∈ s, there is an
action profile δ ∈ DC of coalition C such that for any complete action profile
δ′ ∈ DA if δ ⊆ δ′, then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S, if (s, δ′, s′) ∈M , then ϕ ∈ s′.

Proof. Consider any state s ∈ S and any formula [C]pϕ. Let action profile
δ ∈ DC be defined as following: δ(a) = (ϕ, p) for each agent a ∈ C.

Let s′ ∈ S be a state and δ′ ∈ DA be a complete action profile such that
δ ⊆ δ′ and (s, δ′, s′) ∈ M . Note that δ′(a) = δ(a) = (ϕ, p) for each agent
a ∈ C by the choice of action profile δ. Thus, Pok(s, δ

′) ≥ p by Definition 8.
Also, ϕ ∈ s′ by Definition 9 and due to the assumption [C]pϕ ∈ s of the
lemma. 2

The next lemma is the standard induction lemma in the proof of complete-
ness. It brings together the results established in Lemma 10 and Lemma 12.

Lemma 13. ϕ ∈ s iff s  ϕ for any formula ϕ ∈ Ψ and any maximal
consistent set s ∈ S.

Proof. We prove the lemma by structural induction on formula ϕ. The
case when formula ϕ is a propositional variable follows from Definition 10
and Definition 5. The case when formula ϕ is a negation or an implication
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follows from Definition 5 and the maximality and the consistency of set s in
the standard way. Let us now suppose that formula ϕ has the form [C]pψ.
(⇒) : Assume that [C]pψ ∈ s. Thus, by Lemma 12, there is an action profile
δ ∈ DC of coalition C such that for any complete action profile δ′ ∈ DA if
δ ⊆ δ′, then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S, if (s, δ′, s′) ∈M , then ϕ ∈ s′.
Note that statement ψ ∈ s′ is equivalent to s′  ψ by the induction hypoth-
esis. Therefore, s  [C]pψ by Definition 5.
(⇐) : Suppose that s  [C]pψ. Thus, by Definition 5, there is an action
profile δ0 ∈ DC such that for any complete action profile δ′ ∈ DA if δ0 ⊆ δ′,
then

1. Pok(s, δ
′) ≥ p and

2. for any state s′ ∈ S if (s, δ′, s′) ∈M , then s′  ψ.

Assume that [C]pψ /∈ s. Thus, ¬[C]pψ ∈ s due to the maximality of set
s. Hence, by Lemma 10 there is δ′0 ∈ DA such that δ0 ⊆ δ′0 and one of the
following is true:

3. Pok(s, δ
′
0) < p or

4. there is s′ ∈ S such that (s, δ′0, s
′) ∈M and ¬ψ ∈ s′.

Note that statement 3 can not be true due to statement 1 above. Thus,
there is s′ ∈ S where (s, δ′0, s

′) ∈ M and ¬ψ ∈ s′. Hence, ψ /∈ s due to
the consistency of set s′. Thus, s′ 1 ψ by the induction hypothesis, which
contradicts to statement 2 above. 2

We are now ready to state and to prove the strong completeness for our
logical system.

Theorem 3. If X ⊆ Φ, ϕ ∈ Φ, and X 0 ϕ, then there is a state s of a game
with stochastic failures such that s  χ for each χ ∈ X and s 1 ϕ.

Proof. Let (S,D, Pok,M, π) be the canonical game with stochastic failures.
Suppose that X 0 ϕ. Hence, set X ∪{¬ϕ} is consistent. By Lemma 4, there
is a maximal consistent extension s ⊆ Φ of set X ∪ {¬ϕ}. Then, s ∈ S by
Definition 6. Note that ϕ /∈ s due to the consistency of set s. Also, χ ∈ s for
each χ ∈ X because X ⊆ s. Therefore, s  χ for each χ ∈ X and s 1 ϕ by
Lemma 13. 2
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3.5. Incompleteness in Language Φ∅

Recall that in any formula [C]pϕ ∈ Φ, set C is a coalition. We have
defined coalitions to be nonempty sets of agents. One can consider an ex-
tension of our language by allowing coalitions to be empty. We will refer
to such an extension as language Φ∅. The semantics of language Φ∅ is still
specified by Definition 5. Informally, s  [∅]pϕ ∈ Φ means that under any
complete action profile δ′, the game will not fail with probability at least p
and statement ϕ is guaranteed to be true in the next state. All axioms and
inference rules of our logical system stated in language Φ∅ are sound with
respect to the semantics of games with stochastic failures.

In this section we prove that no strongly sound logical system in lan-
guage Φ∅ is strongly complete with respect to the semantics of stochastic
failures. This result is formally stated as Theorem 4. We start by reminding
the definitions of strong soundness and strong completeness.

Definition 11. A logical system L is strongly sound when for each set of
formulae X, each formula ϕ, and each state s of an arbitrary game with
stochastic failures, if s  χ for each formula χ ∈ X and X `L ϕ, then s  ϕ.

Definition 12. A logical system L is strongly complete if for each set of
formulae X and each formula ϕ such that X 0L ϕ, there is a state s of a
game with stochastic failures such that s  χ for each formula χ ∈ X and
s 1 ϕ.

Next we prove our incompleteness result, which is stated below as Theo-
rem 4. We start by defining set X as the following infinite subset of Φ∅:

X = {[∅]1−10−n> | n ≥ 0} = {[∅]0>, [∅]0.9>, [∅]0.99>, . . . }.

Lemma 14. For any state s ∈ S of any game with stochastic failures, if
s  χ for each χ ∈ X, then s  [∅]1>.

Proof. Suppose that s 1 [∅]1>. Let δ∅ be the unique strategy profile of
the empty coalition. Thus, by Definition 5, there exists a complete action
profile δ′ ∈ DA and such that δ ⊆ δ′ and either Pok(s, δ

′) < 1 or there is a
state s′ ∈ S such that (s, δ′, s′) ∈ M and s′ 1 >. Hence, since formula >
is satisfied in each state of each model, Pok(s, δ

′) < 1. Choose any integer
n > 0 such that

Pok(s, δ
′) < 1− 10−n. (16)
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By the assumption of the lemma, s  [∅]1−10−n>. Thus, Pok(s, δ
′) ≥ 1−10−n

by Definition 5 and because δ∅ ⊆ δ′, which contradicts inequality (16). 2

Lemma 15. X 0L [∅]1> for any logical system L strongly sound with re-
spect to the semantics of the games with stochastic failures.

Proof. Suppose that X `L [∅]1>. Hence, since any proof is using only finitely
many assumptions, there must exists an integer n ≥ 0 such that

[∅]0>, [∅]0.9>, [∅]0.99>, . . . , [∅]1−10−n> `L [∅]1>. (17)

1-10-n

Figure 1: Game with Stochastic Failure G1.

Consider now game with stochastic failure G1 depicted in Figure 1. This
game has only one state. Under any strategy profile, with probability 1−10−n

the game loops back into the same state and with probability 10−n the game
fails. By item 4 of Definition 5, all assumptions in statement (17) hold in the
unique state of this game while the conclusion does not. Therefore, logical
system L is not strongly sound. 2

Theorem 4. Any strongly sound logical system in language Φ∅ is not strongly
complete with respect to the semantics of games with stochastic failures.

Proof. Consider any strongly complete system L. Thus, X `L [∅]1>, by
Definition 12 and Lemma 14. Therefore, system L is not strongly sound by
Definition 11 and Lemma 15. 2
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4. Discussion

In Theorem 3, we have shown that our logical system is strongly complete
if the language does not include the empty coalition. In Theorem 4, we
have shown that our logical system is strongly incomplete if the language
does include the empty coalition. It is natural to ask where the proof of
Theorem 3 fails if we consider the empty coalition and where the proof of
Theorem 4 fails if instead of the empty coalition we consider a nonempty
one.

In case of Theorem 3, it is Definition 8. Indeed, if coalitions could be
empty, then it is possible for the set s to include formulae [∅]0.9>, [∅]0.99>,
[∅]0.999>, . . . . In this case, the set

{p | [C]pϕ ∈ s,∀a ∈ C(δ(a) = (ϕ, p))} (18)

has no maximal value and, thus, the value of Pok(s, δ) is undefined.
In case of Theorem 4, it is Lemma 14. Namely, this lemma is false if ∅ in

the definition of the set X and in the statement of Lemma 14 is replaced with
the same nonempty coalition C. Indeed, assume, without loss of generality,
that coalition C is a singleton set {a} and consider game with stochastic
failures G2 depicted in Figure 2. Agent a in this game has infinitely many

d1: 0.9 d2: 0.99

d3: 0.999

d4: 0.9999
. . .

Figure 2: Game with Stochastic Failure G2 with a single state s.

actions d1, d2, d3, . . . . Action dn leads to failure with probability 10−n. In
other words, Pok(s, dn) = 1 − 10−n, where s is the only state of this game.
Note that s  χ for each χ ∈ X but s 1 [∅]1>. Therefore, Lemma 14
becomes false if ∅ is replaced with coalition {a}.

As pointed out above, our canonical game construction fails for the empty
coalition because if coalition C is empty, then the set (18) might have no max-
imal value. In other words, the canonical game construction imposes certain
constraints through the actions of the coalition members. If the coalition is
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empty, then the constraints cannot be easily enforced. It is interesting to
note that such a situation happens in at least two other works on coalition
logics. Goranko, Jamroga, and Turrini point out that Pauly’s Representation
Theorem [10, p.11] fails because “there is no guarantee that any i [in coali-
tion C] will indeed choose fi as its strategy . . . since the coalition C . . . does
not include any players”. Similarly, Naumov and Tao developed “harmony”
construction to overcome the fact that they cannot control the actions of the
empty coalition [37].

5. Conclusion

In this article we explored two different approaches to adding probabilities
to coalition logic. The first approach captures the properties of games with
stochastic transitions, and the second approach captures the properties of
games with stochastic failures. We showed that the logical system under the
first approach contains non-trivial properties that go far beyond the axioms of
original coalition logic. It also turned out that the situation under the second
approach depends on the presence of the empty coalition in the language. We
gave a strongly sound and strongly complete logical system for the language
without empty coalition and prove that such a system does not exist for the
language with the empty coalition.

An important question about decidability of the proposed logical system
is left unanswered. The standard technique to prove decidability of a com-
plete logical system is to show completeness with respect to finite models
using filtration on subformulae. Unfortunately, this technique fails in the
current setting because the proof of Lemma 11 forces us to consider formulae
¬[A]p⊥ with arbitrary small values of p. The same issue also prevents us
from proving weak completeness for our logical system in language Φ∅. Both
of these questions remain open for future research.
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[54] I. Kokkinis, Z. Ognjanović, T. Studer, Probabilistic justification logic,
in: International Symposium on Logical Foundations of Computer Sci-
ence, Springer, 2016, pp. 174–186.

[55] G. Allan, Probability: A graduate course, Springer, New York, 2005.

[56] D. Dubois, H. Prade, Readings in uncertain reasoning, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1990, Ch. An Introduc-
tion to Possibilistic and Fuzzy Logics, pp. 742–761.

[57] C.-J. Liau, B. I.-P. Lin, Quantitative modal logic and possibilistic rea-
soning, in: Proceedings of the 10th European conference on Artificial
intelligence, John Wiley & Sons, Inc., 1992, pp. 43–47.

[58] T.-F. Fan, C.-J. Liau, A logic for reasoning about justified uncertain
beliefs., in: IJCAI, 2015, pp. 2948–2954.

[59] R. S. Milnikel, The logic of uncertain justifications, Annals of Pure and
Applied Logic 165 (1) (2014) 305 – 315, the Constructive in Logic and
Applications.

[60] P. Naumov, J. Tao, Logic of confidence, Synthese 192 (6) (2015) 1821–
1838.

[61] P. Naumov, J. Tao, Knowing-how under uncertainty, Artificial Intelli-
gence 276 (2019) 41 – 56. doi:10.1016/j.artint.2019.06.007.

[62] E. Mendelson, Introduction to mathematical logic, CRC press, 2009.

34


