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Abstract

Discounting future costs and rewards is a common practice in account-
ing, game theory, and machine learning. In spite of this, existing logics
for reasoning about strategies with cost and resource constraints do not
account for discounting. The article proposes a sound and complete logi-
cal system for reasoning about budget-constrained strategic abilities that
incorporates discounting into its semantics.

1 Introduction

Several logical systems for reasoning about agent and coalition power in game-
like settings have been previously proposed. Among them are coalition logics [19,
20], ATL [7], ATEL [21], ATLES [22], know-how logics [1, 23, 15, 13, 17, 16, 18],
and STIT [8, 24, 14]. Some of these systems have been extended to incorporate
resources and costs of actions [11, 6, 10, 3, 2, 12, 4, 5]. Even in the case of
multi-step actions, these systems treat current and future costs equally.

At the same time, in game theory, accounting, and machine learning, costs
of multi-step transitions are often discounted to reflect the fact that future
costs and earnings have lesser present values. Thus, there is a gap between
the way resources and costs currently are treated in logic and the way they are
accounted for in other fields. To address this gap, in this article we propose
a sound and complete logic of coalition power whose semantics incorporates
discounting. Although we formulate our work in terms of cost, it could be
applied to any other resource measured in non-negative real numbers. It can
also be straightforwardly extended to vectors of non-negative real numbers in
order to incorporate multiple resources.

As an example, consider a single-player game depicted in Figure 1. This
game has four game states w, u, v, and s and a single terminal state t. Propo-
sitional variable p is true in game states w, u, and v and is false in game state
s. We assume that the values of propositional variables are not defined in the
terminal state t. The agent a has multiple actions in each game state. These
actions are depicted in Figure 1 using directed edges. The cost of each action
to agent a is shown as a label on the directed edge. For instance, the directed
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edge from state w to state u with label 2 means that the agent a has an action
with cost 2 to transition the game from state w to state u. Transitioning to the
terminal state t represents the termination of the game.
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Figure 1: A game.

Note that in state w the agent has two strategies to maintain condition p
indefinitely. The first strategy consists of transitioning the game to state u at
cost 2 and then repeatedly applying the action with cost 2 to keep the game in
state u. Without discounting, the cost of this strategy is 2 + 2 + 2 + · · · = +∞.
The agent also has another strategy to maintain condition p that consists of
transitioning to state v at cost 1 and then keeping the game in state v with
recurrent cost 1. Intuitively, the second strategy is less expensive than the first
because each step costs half as much. However, formally, the cost of the second
strategy without discounting is the same as the first one: 1 + 1 + 1 + · · · = +∞.

The problem that we observe here is not specific to costs of strategies. A
similar situation also appears in repetitive games, accounting, and reinforcement
machine learning algorithms based on Markov decision processes. One of the
solutions commonly used to resolve this problem is discounting1. It consists of
counting the cost on the first step at the nominal value, the cost on the second
step with a discount factor γ ∈ (0, 1), the cost on the third step with discount
factor γ2, etc. With discounting, the total cost of our first strategy is

2 + 2γ + 2γ2 + 2γ3 + · · · = 2

1− γ
,

while the cost of our second strategy is

1 + 1γ + 1γ2 + 1γ3 + · · · = 1

1− γ
.

Since 1
1−γ <

2
1−γ , we can say that with discounting the second strategy is less

expensive than the first. In the rest of this article, we assume a fixed discount
factor γ ∈ (0, 1).

1The other solution is using the limit of mean cost. Discounting is used when the agents
care more about short-term costs than long-term ones, whereas the limit of mean cost is used
to treat short-term and long-term costs equally.
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2 Outline

The rest of this article is structured as follows: In the next section, we intro-
duce a class of games that is used later to define the semantics of our logical
system. Section 4 defines the language of our system. Section 5 gives the
discounting-based semantics of this language. Section 6 shows that the proper-
ties of strategies with discounting depend on whether we consider strategies with
or without perfect recall. Section 7 lists and discusses the axioms of our logical
system for the strategies with perfect recall. Section 9 proves the completeness
of our system. Sections 10 through 12 discuss various possible extensions of our
logical system. Section 13 concludes. A preliminary version of this work, with a
partial proof of the completeness and without discussion sections 10 through 12,
appeared as [9].

3 Game Definition

Throughout the article, we assume a fixed nonempty set of propositional vari-
ables and a fixed set of agents A. By a coalition we mean any subset of A. By
XA we mean the set of all functions from set A to a set X.

The class of games that we consider is specified below.

Definition 1 A game is a tuple (W, t,∆, ε,M, π), where

1. W is a set of game states,

2. t /∈W is a terminal state, by W t we denote the set of all states W ∪{t},

3. ∆ is an arbitrary set called domain of actions,

4. ε ∈ ∆ is a zero-cost action,

5. M ⊆W ×∆A × [0,∞)A ×W t is a relation called mechanism, such that

(a) for each tuple (w, δ, u, w′) ∈ M and each agent a ∈ A, if δ(a) = ε,
then u(a) = 0,

(b) for each state w ∈ W and each complete action profile δ ∈ ∆A,
there is a function u ∈ [0,+∞)A and a state w′ ∈ W t such that
(w, δ, u, w′) ∈M ,

6. π is a valuation function that maps propositional variables into subsets
of W .

Intuitively, the mechanism is a set of all quadruples (w, δ, u, v) such that the
game might transition from state w to state v under action profile δ at costs
to the individual agents specified by function u. The word “complete” in the
above definition refers to the fact that function δ assigns actions to all agents.

The defined above games are similar to resource-bounded action frames,
which are the semantics of Resource-Bounded Coalition Logic (RBCL) [6]. In
particular, both of them have a zero-cost action.
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However, there are several differences between these two classes of models.
Unlike RBCL frames, our games have only one resource that we call “cost”.
We do this for the sake of presentation simplicity. Multiple resources could
be incorporated into our system without any significant changes to the results
in this article. RBCL allows only non-negative integer resource requirements,
while costs in our games are non-negative real numbers. RBCL assigns a unique
cost to each action, while our games assign cost to each transition. As a result,
the cost to the agent in our setting depends not only on the action of the agent
but also on the actions of the other agents. This is similar to how the utility
function of an agent in game theory is a function of the complete action profile,
not just of the action of that agent. We achieve this by including the cost of the
transition for each agent as the third component of a tuple from the mechanism
relation.

Furthermore, the RBCL frames are deterministic while our games are not
deterministic because we represent the mechanism as a relation, not a function.
Unlike RBCL frames, our games can be terminated by the agents. In order to
make our semantics more general, the games are terminated through a transition
to a terminal state. Such transitions allow the agents to be charged upon the
termination of a game. This ability is significant for our proof of completeness.
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Figure 2: A game. The unreachable terminal state t is not shown in the diagram.

The game depicted in Figure 1 has only one player. Figure 2 depicts a two-
player game. Note that our general notion of the game captured in Definition 1
allows each agent to influence the outcome of each transition and imposes a cost
for each transition on each agent. For the sake of simplicity, the game depicted in
Figure 2 designates a single “dictator” agent in each state. For example, in state
w, the dictator is agent a. The dictator is solely responsible for the choice of the
next state and bears all the costs associated with the transition. In the diagram,
the dictator is specified inside each state’s circle. Note that in state w agent a
has a strategy to maintain condition p at cost 100 + 100γ + 100γ2 + · · · = 100

1−γ
to herself and cost 0 + 0γ + 0γ2 + · · · = 0 to agent b.

Definition 2 A finite sequence w0, δ0, u0, w1, . . . , δn−1, un−1, wn is called a play
of a game (W, t,∆, ε,M, π), if
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1. wi ∈W for 0 ≤ i < n and wn ∈W t,

2. δi ∈ ∆A, where 0 ≤ i < n,

3. ui ∈ [0,∞)A is a cost function, where 0 ≤ i < n,

4. (wi−1, δi−1, ui−1, wi) ∈M , where 1 ≤ i ≤ n.

The set of all plays of a given game is denoted by Play.

4 Syntax

The language Φ of our system is defined by the grammar

ϕ := p | ¬ϕ | ϕ→ ϕ | [C]xϕ,

where p is a propositional variable, C is a coalition, and x is a “constraint”
function from set C to [0,+∞). We read [C]xϕ as “coalition C has a strategy
to maintain condition ϕ at individual cost no more than x(a) to each member
a ∈ C”.

If C is a coalition {a1, . . . , an} and x is a function from set C to [0,+∞) such
that x(ai) = xi for each i ≤ n, then we use shorthand notation [a1, . . . , an]x1,...,xn

ϕ
to refer to formula [C]xϕ.

Definition 3 For any real µ > 0 and any formula ϕ ∈ Φ, formula ϕ/µ is
defined recursively as follows:

1. p/µ ≡ p, for any propositional variable p,

2. (¬ϕ)/µ ≡ ¬(ϕ/µ),

3. (ϕ→ ψ)/µ ≡ (ϕ/µ)→ (ψ/µ),

4. ([C]xϕ)/µ ≡ [C]x/µ(ϕ/µ).

For example, ([a, b]4,6¬[b, c]8,2 p)/2 = [a, b]2,3¬[b, c]4,1 p.

5 Semantics

In this section we define the semantics of our logical system.

Definition 4 An action profile of a coalition C is a function from set C to set
∆.

Definition 5 A strategy of a coalition C is a function from set C×Play to set
∆.

Note that each strategy takes into account not just the current state but the
whole play. Thus, the strategies that we consider are perfect recall strategies.
We discuss this in detail in the next section.
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Definition 6 A play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play satisfies strategy s of
a coalition C if for each i such that 0 ≤ i < n and each agent a ∈ C,

δi(a) = s(a, (w0, δ0, u0, w1, . . . , ui−1, wi)).

For any functions x and y, we write x ≤C y if x(a) ≤ y(a) for each a ∈ C.
We define notation x =C y similarly.

Definition 7 For each formula ϕ ∈ Φ and each state w ∈ W of a game
(W, t,∆, ε,M, π), satisfaction relation w  ϕ is defined recursively as follows:

1. w  p, if w ∈ π(p),

2. w  ¬ϕ, if w 1 ϕ,

3. w  ϕ→ ψ, if w 1 ϕ or w  ψ,

4. w  [C]xϕ if there is a strategy s of coalition C such that for any play
w0, δ0, u0, w1, . . . , un−1, wn ∈ Play that satisfies strategy s, if w = w0,
then

(a)
∑n−1
i=0 uiγ

i ≤C x and

(b) if wn 6= t, then wn  ϕ/γn.

To understand why item 4(b) of the above definition uses formula ϕ/γn

instead of formula ϕ, let us consider an example of a formula ϕ ≡ [D]yψ. Note
that formula [C]x[D]yψ states that coalition C can maintain at cost x the ability
of coalition D to maintain ψ at cost y. Consider the hypothetical case where C,
at cost x to C, will be maintaining this ability of D for, say, 10 transitions. The
formula [C]x[D]yψ states that after 10 moves coalition D should be able to take
over and maintain condition ψ at cost y to D. Given that in our setting the
costs are discounted, an important question is whether y is measured in today’s
money or future money. Note that y in future money is yγ10 in today’s money.
On the other hand, y in today’s money is y/γ10 in future money. In this article
we decided to measure all costs in today’s money. Thus, cost y in [C]x[D]yψ
refers to costs in today’s money (in state w0 of Definition 7). In future money
(in state wn), the same cost is y/γn. As a result, item 4(b) of Definition 7 uses
formula ϕ/γn instead of just ϕ. We further discuss future money in Section 12.

Consider again the game depicted in Figure 2. As discussed earlier, in state
w, single-agent coalition {a} has a strategy to maintain condition p by looping
in state w at recurrent cost 100. The total cost of this strategy is 100 + 100γ +
100γ2 + · · · = 100

1−γ . Thus, w  [a]100/(1−γ) p. In the same game, single-agent

coalition {b} also has a strategy to maintain condition p. The strategy consists
in pushing the game back to state w each time when agent a transitions the
game out of state w either into state u or state v. The cost of the “pushing back”
action from state u and v is 1 and 200, respectively. Hence, the total cost to
agent b could be no more than 0+200γ+0+200γ3+0+· · · = 200γ/(1−γ2). Then,
w  [b]200γ/(1−γ2) p. Finally, note that if agents a and b decide to cooperate,
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then maintaining condition p becomes significantly less expensive for both of
them because they can alternate the state of the game between states w and u.
The total cost of the joint strategy to agent a is 1+0+γ2+0+γ3+· · · = 1

1−γ2 and

to agent b is 0 +γ+ 0 +γ3 + · · · = γ
1−γ2 . Therefore, w  [a, b]1/(1−γ2),γ/(1−γ2) p.

6 Perfect Recall Assumption

Definition 5 specifies a strategy of a coalition as a function that assigns an
action to each member of a coalition based on a play of the game. In other
words, any strategy has access to the whole history of the game rather than
just to the current state. Such strategies are often referred to as perfect recall
strategies. As the next example shows, perfect recall strategies might have
different discounted costs than memoryless strategies for the same condition to
maintain in the same game.
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Figure 3: A game. The unreachable terminal state t is not shown in the diagram.

Consider the game depicted in Figure 3 and assume, for this example only,
that γ = 2/3. Suppose that coalition {a, b, d} wants to maintain condition p
starting from state w1.

Since agent c is not a member of the coalition, the coalition has no control
whether the system transitions from state w1 to state w2 or w3. Once the system
is either in state w2 or state w3, in order to maintain the condition p, agent a
or agent b, respectively, will have to transition the game to state w4 at cost
4
3γ = 4

3 ·
2
3 = 8

9 to the agent. In state w4, the coalition faces a choice between
(i) transitioning game into state w5 in which agent a encounters cost

1γ3 + 1γ4 + · · · = γ3

1− γ
=

(2/3)3

1/3
=

8

9

to maintain p and (ii) transitioning game into state w6 in which agent b encoun-
ters the same cost 1γ3 + 1γ4 + · · · = 8

9 to maintain condition p.
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If agent d has a perfect recall, then she can balance the costs between agents
a and b by transitioning to state w6 if the game transitioned to w4 from state
w2 and transitioning to state w5 if the game transitioned to w4 from state w3.
This way, agents a and b encounter the same total costs 8/9:

w1  [a, b, d]8/9,8/9,0 p.

At the same time, if agent d does not have memory about the previous state
of the game, then either agent a or b might encounter a total cost as high as
8/9 + 8/9 = 16/9 while executing the coalition strategy to maintain condition
p:

w1  [a, b, d]16/9,16/9,0 p.

In this article, we consider discounted costs under perfect recall assumption
for all agents.

7 Axioms

In this section, we introduce a logical system describing the properties of coali-
tion power modality [C]xϕ. In addition to propositional tautologies in language
Φ, the system contains the following axioms:

1. Reflexivity: [C]xϕ→ ϕ,

2. Cooperation: [C]x(ϕ→ ψ)→ ([D]yϕ→ [C ∪D]x∪yψ), where C ∩D = ∅,

3. Monotonicity: [C]xϕ→ [C]yϕ, where x ≤C y,

4. Transitivity: [C]xϕ→ [C]x[C]xϕ.

Recall that the value of discount factor γ has been fixed at the end of Section 1.
It is worth noting that this factor does not appear explicitly in any of the above
axioms.

The Reflexivity axiom says that if coalition C can maintain condition ϕ at
discounted cost x starting from the current state, then condition ϕ must be true
in the current state. The Cooperation axiom states that if coalitions C and D
are disjoint, coalition C can maintain condition ϕ → ψ at cost x, and D can
maintain condition ϕ at cost y, then together they can maintain condition ψ
at cost x ∪ y. Here, by x ∪ y we mean the union of two functions with disjoint
domains. The Monotonicity axiom states that if a coalition can maintain a
condition at some cost, then it can maintain the same condition at any larger
cost.

The assumption of the Transitivity axiom states that coalition C has a strat-
egy, say s, to maintain condition ϕ at cost x in perpetuity. The conclusion states
that the same coalition can, at cost x, maintain its own ability to maintain ϕ at
cost x. To achieve this, coalition C can use the same strategy s. Indeed, assume
that coalition C used strategy s for some number of steps at cost x′ ≤C x in to-
day’s money. Thus, it should be able to keep using it at cost at most x−x′ ≤C x
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in today’s money to maintain ϕ. Note that it is crucial for this argument that
all costs are computed in today’s money. Furthermore, as we observe in Sec-
tion 12, the Transitivity axiom is not sound if the cost in the internal modality
is measured in future money.

We write ` ϕ and say that formula ϕ is a theorem if ϕ is derivable from the
above axioms using the Modus Ponens and the Necessitation inference rules:

ϕ,ϕ→ ψ

ψ

ϕ

[C]xϕ
.

In addition to unary relation ` ϕ, we also consider binary relation X ` ϕ. Let
X ` ϕ if formula ϕ is provable from the theorems of our logical system and the
set of additional assumptions X using only the Modus Ponens inference rule.

Lemma 1 If ϕ1, . . . , ϕn ` ψ and sets C1,. . . ,Cn are pairwise disjoint, then

[C1]x1
ϕ1, . . . , [Cn]xn

ϕn ` [C1 ∪ · · · ∪ Cn]x1∪···∪xn
ψ.

Proof. Apply the deduction lemma n times to the assumption ϕ1, . . . , ϕn ` ψ.
Then, ` ϕ1 → (· · · → (ϕn → ψ)). Thus,

` [∅]0(ϕ1 → (· · · → (ϕn → ψ)))

by the Necessitation inference rule. Hence,

` [C1]x1
ϕ1 → [C1]x1

(ϕ2 · · · → (ϕn → ψ))

by the Cooperation axiom and the Modus Ponens inference rule. Then,

[C1]x1ϕ1 ` [C1]x1(ϕ2 · · · → (ϕn → ψ))

by the Modus Ponens inference rule. Thus, again by the Cooperation axiom
and the Modus Ponens inference rule,

[C1]x1
ϕ1 ` [C2]x2

ϕ2 → [C1 ∪ C2]x1∪x2
(ϕ3 · · · → (ϕn → ψ)).

Therefore, [C1]x1
ϕ1, . . . , [Cn]xn

ϕn ` [C1 ∪ · · · ∪ Cn]x1∪···∪xn
ψ by repeating the

last two steps n− 2 times. �

Lemma 2 If ϕ1/γ, . . . , ϕn/γ ` ψ/γ, then ϕ1, . . . , ϕn ` ψ.

Proof. Note that if a sequence of formulae χ1, . . . , χn is a derivation in our
logical system, then for each real number µ > 0, sequence χ1/µ, . . . , χn/µ is also
a derivation. Hence, for any formulae ϕ1, . . . , ϕn, ψ ∈ Φ, if ϕ1, . . . , ϕn ` ψ, then
ϕ1/µ, . . . , ϕn/µ ` ψ/µ. Let µ = γ−1. Thus, for any formulae ϕ1, . . . , ϕn, ψ ∈ Φ,
if ϕ1/γ, . . . , ϕn/γ ` ψ/γ, then ϕ1, . . . , ϕn ` ψ. �

Lemma 3 ` [C]xϕ→ [D]yϕ, where C ⊆ D and x ≤C y.
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Proof. Let y′ be the restriction of function y to set D \ C. Then, by the
Cooperation axiom and the assumption C ⊆ D,

` [D \ C]y′(ϕ→ ϕ)→ ([C]xϕ→ [D]y′∪xϕ).

Note that ϕ → ϕ is a propositional tautology. Hence, by the Necessitation
inference rule ` [D \ C]y′(ϕ → ϕ). Then, ` [C]xϕ → [D]y′∪xϕ by the Modus
Ponens inference rule. Note that ` [D]y′∪xϕ → [D]yϕ by the Monotonicity
axiom and the assumption x ≤C y of the lemma. Therefore, ` [C]xϕ → [D]yϕ
by propositional reasoning. �

8 Soundness

In this section we prove soundness of each of our axioms as a separate lemma.
In these lemmas we assume that w is an arbitrary game state of a game
(W, t,∆, ε,M, π).

Lemma 4 If w  [C]xϕ, then w  ϕ.

Proof. Single-element sequence w is a play by Definition 2. Thus, by item
4 of Definition 7, the assumption w  [C]xϕ implies that w  ϕ/γ0. Hence,
w  ϕ/1. Therefore, w  ϕ by Definition 3. �

Lemma 5 If w  [C]xϕ and x ≤C y, then w  [C]yϕ.

Proof. By item 4 of Definition 7, the assumption w  [C]xϕ implies that there
is a strategy s of coalition C such that for any play w0, δ0, u0, w1, . . . , un−1, wn ∈
Play that satisfies strategy s, if w = w0, then

1.
∑n−1
i=0 uiγ

i ≤C x and

2. if wn 6= t, then wn  ϕ/γn.

Note that condition 1 above implies that
∑n−1
i=0 uiγ

i ≤C y by the assumption
x ≤C y of the lemma. Therefore, w  [C]yϕ again by item 4 of Definition 7. �

Lemma 6 If w  [C]x(ϕ → ψ), w  [D]yϕ, and coalitions C and D are
disjoint, then w  [C ∪D]x∪yψ.

Proof. By item 4 of Definition 7, the assumption w  [C]x(ϕ → ψ) implies
that there is a strategy s1 of coalition C such that for any play

w0, δ0, u0, w1, . . . , un−1, wn ∈ Play

that satisfies strategy s1, if w = w0, then
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1.
∑n−1
i=0 uiγ

i ≤C x and

2. if wn 6= t, then wn  (ϕ→ ψ)/γn.

Similarly, the assumption w  [D]yϕ implies that there is a strategy s2 of coali-
tion C such that for any play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play that satisfies
strategy s2, if w = w0, then

3.
∑n−1
i=0 uiγ

i ≤D y and

4. if wn 6= t, then wn  ϕ/γn.

Consider strategy s of coalition C ∪D such that

s(a, λ) =

{
s1(a, λ), if a ∈ C,
s2(a, λ), if a ∈ D,

for any play λ ∈ Play. Note that strategy s is well-defined because sets C and
D are disjoint by the assumption of the lemma.

Consider any play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play satisfying strategy s.
Thus, by Definition 6, this play satisfies strategies s1 and s2. Note that condi-
tions 1 and 3 above imply that

∑n−1
i=0 uiγ

i ≤C∪D x ∪ y. Suppose that wn 6= t.
By item 4 of Definition 7, it suffices to show that wn  ψ/γn. Indeed, condi-
tion 2 above implies that wn  (ϕ → ψ)/γn. Thus, wn  ϕ/γn → ψ/γn by
Definition 3. Therefore, wn  ψ/γn by item 3 of Definition 7 and condition 4
above. �

The next auxiliary lemma follows from Definition 3.

Lemma 7 ϕ/(γγ′) = (ϕ/γ)/γ′. �

Lemma 8 If w  [C]xϕ, then w  [C]x[C]xϕ.

Proof. By item 4 of Definition 7, the w  [C]xϕ implies that there is a strategy
s of coalition C such that for any play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play that
satisfies strategy s, if w = w0, then

n−1∑
i=0

uiγ
i ≤C x (1)

and
if wn 6= t, then wn  ϕ/γn. (2)

Consider any play w′0, δ
′
0, u
′
0, w

′
1, . . . , u

′
m−1, w

′
m ∈ Play that satisfies strategy s

such that w = w′0. By the same item 4 of Definition 7, it suffices to show that

m−1∑
i=0

u′iγ
i ≤C x (3)
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and
if w′m 6= t, then w′m  ([C]xϕ)/γm. (4)

Note that statement (3) follows from assumption (1). Thus, it is enough to
prove statement (4). Suppose w′m 6= t, then, by Definition 3, it suffices to show
that

w′m  [C]x/γm(ϕ/γm). (5)

Consider strategy

s′(a, (w0, δ0, u0, w1, . . . , un−1, wn)) = (6)

=


s(a, (w′0, δ

′
0, w

′
1, . . . , u

′
m−1,

w′m, δ0, u0, . . . , un−1, wn)), if w′m = w0

ε, otherwise.

Consider any play w′′0 , δ
′′
0 , u
′′
0 , w

′′
1 , . . . , u

′′
k−1, w

′′
k ∈ Play that satisfies strategy s′

such that w′m = w′′0 . By the same item 4 of Definition 7, to prove statement (5)
it suffices to show that

k−1∑
i=0

u′′i γ
i ≤C x/γm

and if w′′k 6= t, then w′′k  ([C]x/γm(ϕ/γm))/γk. Both of these facts follow from
the three claims below.

Claim 1 The play w′0, δ
′
0, u
′
0, w

′
1, . . . , u

′
m−1, w

′
m, δ

′′
0 , u
′′
0 , w

′′
1 , . . . , u

′′
k−1, w

′′
k satis-

fies strategy s.

Proof of Claim. The statement of the claim follows from Definition 6, equa-
tion (6), and the assumption that the play w′′0 , δ

′′
0 , u
′′
0 , w

′′
1 , . . . , u

′′
k−1, w

′′
k satisfies

strategy s′. �

Claim 2
∑k−1
i=0 u

′′
i γ

i ≤C x/γm.

Proof of Claim. By statement (1) and Claim 1,

m−1∑
i=0

u′iγ
i +

m+k−1∑
i=m

u′′i−mγ
i ≤C x.

Functions u′0, . . . , u
′
m−1 are non-negative by item 5 of Definition 1. Hence,∑m+k−1

i=m u′′i−mγ
i ≤C x. Thus, γm

∑k
i=0 u

′′
i γ

i ≤C x. Then,
∑k−1
i=0 u

′′
i γ

i ≤C x/γm.
�

Claim 3 If w′′k 6= t, then w′′k  ([C]x/γm(ϕ/γm))/γk.

12



Proof of Claim. By Claim 1, the play w′0, δ
′
0, u
′
0, w

′
1, . . . , u

′
m−1, w

′
m, δ

′′
0 , u
′′
0 ,

w′′1 , . . . , u
′′
k−1, w

′′
k satisfies strategy s. Then, w′′k  ([C]xϕ)/γm+k by equation (2)

and the assumption w′′k 6= t. Hence w′′k  (([C]xϕ)/γm)/γk by Lemma 7. There-
fore, w′′k  ([C]x/γm(ϕ/γm))/γk by item 4 of Definition 3. �
This concludes the proof of the lemma. �

9 Completeness

In this section, we prove the completeness of our logical system. We start the
proof by defining the canonical game (W, t,∆, ε,M, π). The set W is the set
of all maximal consistent sets of formulae in language Φ, and t is an arbitrary
element such that t /∈ W . Let ε be an arbitrary element such that ε /∈ Φ and
the set of actions ∆ be Φ ∪ {ε}.

Definition 8 Mechanism M is the set of all quadruples (w, δ, u, w′) ∈ W ×
∆A × [0,∞)A ×W t such that for each formula [C]xϕ ∈ w, if δ(a) = [C]xϕ for
each agent a ∈ C, then

1. u ≤C x and

2. if w′ 6= t, then ([C]x−uϕ)/γ ∈ w′.

Informally, action δ(a) = [C]xϕ of an agent a ∈ C means “as a part of coali-
tion C, I request to maintain condition ϕ at individual cost x(b) to each member
b ∈ C”. In order for the request to be valid, it should be submitted by all mem-
bers of coalition C. Even if all members of coalition C submit the request, it is
enforced by the mechanism only if formula [C]xϕ belongs to the current state
w. Condition 1 of Definition 8 stipulates that although the mechanism is free to
set the cost u of the transition below what the members of the coalition offered
to pay, the mechanism cannot overcharge them. If the mechanism decides to
charge members of the coalition the amount u for transition to state w′, then it
also must provide the opportunity for the members to continue to maintain the
condition ϕ at cost x− u. The latter is captured by condition 2 of Definition 8.

Definition 9 π(p) = {w ∈W | p ∈ w}.

This concludes the definition of the canonical game (W, t,∆, ε,M, π). As
usual, the key step in proving the completeness theorem is an “induction” (or
“truth”) lemma, which in our case is Lemma 11. Lemma 9 and Lemma 10
below are two auxiliary lemmas that capture the two directions of the induction
lemma in the case when formula ϕ has the form [C]xψ.

Lemma 9 For each state w ∈W t and each formula [C]xϕ ∈ w, there is strategy
s of coalition C such that, for each play w0, δ0, u0, w1, . . . , un−1, wn satisfying
strategy s, if w = w0, then

1.
∑n−1
i=0 uiγ

i ≤C x and

13



2. if wn 6= t, then ϕ/γn ∈ wn.

Proof. Let action s(a, λ) for any agent a ∈ C and any play

λ = w0, δ0, u0, w1, . . . , un−1, wn

be defined2 as follows:

s(a, λ) =

{
([C]x−zϕ)/γn, if z ≤C x,

>, otherwise,
(7)

where z =
∑n−1
i=0 uiγ

i.
Consider an arbitrary play w0, δ0, u0, w1, . . . , un−1, wn satisfying strategy s

such that w = w0. It will be sufficient to show that conditions 1 and 2 of the
lemma hold for this play.

Claim 4 For each a ∈ C and each k such that 0 ≤ k ≤ n,

1.
∑k−1
i=0 uiγ

i ≤C x and

2. if wk 6= t, then
(

[C]x−
∑k−1

i=0 uiγiϕ
)
/γk ∈ wk.

Proof of Claim. We prove the claim by induction on integer k. If k = 0,
then

∑k−1
i=0 uiγ

i = 0 ≤C x by the definition of language Φ because [C]xϕ is a
formula. Also,(

[C]x−
∑k−1

i=0 uiγiϕ
)
/γk = ([C]x−0ϕ) /γ0 = [C]xϕ ∈ w0

by the assumption [C]xϕ ∈ w of the lemma and the assumption w = w0.
Suppose k > 0. Then, (wk−1, δk−1, uk−1, wk) ∈ M by Definition 2, the

assumption of the lemma that w0, δ0, u0, w1, . . . , un−1, wn is a play, and the
assumption of the claim that k ≤ n. Thus, wk−1 6= t by item 5 of Definition 1.
Hence, by the induction hypothesis,

k−2∑
i=0

uiγ
i ≤C x, (8)(

[C]x−
∑k−2

i=0 uiγiϕ
)
/γk−1 ∈ wk−1. (9)

By Definition 6 (step i), equation (8) and equation (7) (step ii), and item 4 of
Definition 3 (step iii),

δk−1(a)
i
= s(a, (w0, δ0, u0, w1, . . . , uk−2, wk−1))
ii
= ([C]x−

∑k−2
i=0 uiγiϕ)/γk−1

iii
= [C](x−

∑k−2
i=0 uiγi)/γk−1(ϕ/γk−1). (10)

2Informally, strategy s always requests to maintain condition ϕ using remaining budget
x− z.
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At the same time, by item 4 of Definition 3 (step iv) and equation (9) (step
v),

[C](x−
∑k−2

i=0 uiγi)/γk−1(ϕ/γk−1)
iv
=
(

[C]x−
∑k−2

i=0 uiγiϕ
)
/γk−1

v
∈ wk−1. (11)

Also, (wk−1, δk−1, uk−1, wk) ∈ M by Definition 2 and the assumption that
w0, δ0, u0, w1, . . . , un−1, wn is a play. Thus, by Definition 8 and statements (11)
and (10),

1. uk−1 ≤C
(
x−

∑k−2
i=0 uiγ

i
)
/γk−1 and

2. if wk 6= t, then ([C]((x−
∑k−2

i=0 uiγi)/γk−1−uk−1)
(ϕ/γk−1))/γ ∈ wk.

Thus, by the laws of algebra and item 4 of Definition 3,

1. uk−1γ
k−1 ≤C x−

∑k−2
i=0 uiγ

i and

2. if wk 6= t, then ([C]((x−
∑k−2

i=0 uiγi)−uk−1γk−1)ϕ)/γk ∈ wk.

The last two statements imply, respectively, parts 1 and 2 of the claim. �
The statement of the lemma follows from the above claim when k = n. The
first part follows immediately. To show the second part, note that by Defini-

tion 3, item 2 of the claim implies
(

[C](x−
∑n−1

i=0 uiγi)/γn(ϕ/γn)
)
∈ wn. Thus,

wn ` ϕ/γn by the Reflexivity axiom and the Modus Ponens inference rule.
Therefore, ϕ/γn ∈ wn because set wn is maximal. �

Lemma 10 For each state w ∈ W , each formula [C]xϕ /∈ w, and each action
profile α of coalition C, there is a complete action profile δ, a cost function
u ∈ [0,+∞)A, and a state w′ ∈ W t such that α =C δ, (w, δ, u, w′) ∈ M , and
either (i) u 6≤C x or (ii) w′ 6= t and ϕ/γ /∈ w′.

Proof. Define the complete action profile

δ(a) =

{
α(a), if a ∈ C,
>, otherwise

(12)

and cost function3

u(a) =


y(a), if α(a) = [D]yψ for some [D]yψ ∈ Φ,

where a ∈ C and y(a) > x(a),

0, otherwise.

Note that α =C δ. We consider the following two cases:

Case I: u(a) = 0 for each agent a ∈ C. Consider set

X = {¬(ϕ/γ)} ∪ {([D]yψ)/γ | [D]yψ ∈ w,D ⊆ C,∀a ∈ D(α(a) = [D]yψ)}.
3The choice of function u is perhaps the most unexpected step in our proof. Informally, if

agent a is “bluffing” and is offering to pay more than x(a), then function u charges the agent
the amount she offered to pay, y(a). If the agent makes a “modest” offer of no more than
x(a), then she is not charged at all.
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Claim 5 Set X is consistent.

Proof of Claim. Suppose set X is not consistent. Thus, there are formulae

[D1]y1ψ1, . . . , [Dn]ynψn ∈ w (13)

such that

D1, . . . , Dn ⊆ C, (14)

α(a) = [Di]yiψi ∀i ≤ n ∀a ∈ Di, (15)

and
([D1]y1ψ1)/γ, . . . , ([Dn]ynψn)/γ ` ϕ/γ. (16)

Without loss of generality, we can assume that formulae

([D1]y1ψ1)/γ, . . . , ([Dn]ynψn)/γ

are distinct. Thus, formulae [D1]y1ψ1, . . . , [Dn]ynψn are also distinct by Defini-
tion 3. Hence, sets D1, . . . , Dn are pairwise disjoint due to assumption (15).

By Lemma 2, statement (16) implies that

[D1]y1ψ1, . . . , [Dn]ynψn ` ϕ.

Then, by Lemma 1 and because sets D1, . . . , Dn are pairwise disjoint,

[D1]y1 [D1]y1ψ1, . . . , [Dn]yn [Dn]ynψn ` [D1 ∪ · · · ∪Dn]y1∪···∪ynϕ.

Thus, by the Transitivity axiom and the Modus Ponens inference rule applied
n times,

[D1]y1ψ1, . . . , [Dn]ynψn ` [D1 ∪ · · · ∪Dn]y1∪···∪ynϕ.

Notice that yi(a) ≤ x(a) for any i ≤ n and any agent a ∈ Di. Indeed, suppose
that yi(a) > x(a). Hence u(a) = yi(a) by the choice of cost function u and
statements (14) and (15). Thus, u(a) > x(a). Then, u(a) > 0 because function x
is non-negative by the assumption [C]xϕ ∈ Φ, which contradicts the assumption
u(a) = 0 of the case. Hence, by Lemma 3 and the Modus Ponens inference rule,

[D1]y1ψ1, . . . , [Dn]ynψn ` [C]xϕ.

Then, w ` [C]xϕ by the assumption (13). Thus, [C]xϕ ∈ w because set w is
maximal, which contradicts the assumption [C]xϕ /∈ w of the lemma. �

Let w′ be any maximal consistent extension of set X. Note that ¬(ϕ/γ) ∈
X ⊆ w′ by the choice of sets X and w′. Thus, ϕ/γ /∈ w′ because set w′ is
consistent.

Claim 6 (w, δ, u, w′) ∈M .
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Proof of Claim. Consider any formula [D]yψ ∈ w such that

δ(a) = [D]yψ for each agent a ∈ D. (17)

By Definition 8, it suffices to show that u ≤D y and ([D]y−uψ)/γ ∈ w′. We
consider the following two cases:
Case Ia: D ⊆ C. Thus, α(a) = δ(a) = [D]yψ for each agent a ∈ D by
equation (12) and assumption (17). Hence, ([D]yψ)/γ ∈ X by the choice of set
X. Then, ([D]y−uψ)/γ ∈ X by the assumption of Case I that u =C 0 and the
assumption D ⊆ C of Case Ia. Therefore, ([D]y−uψ)/γ ∈ w′ by the choice of
set w′. Additionally, u =D 0 ≤D y because 0 ≤D y by the definition of Φ.
Case Ib: There is an agent a ∈ D\C. Hence, > = δ(a) = [D]yψ by equation (12)
and assumption (17). Therefore, formula [D]yψ is identical to formula >, which
is a contradiction. �
Note that ¬(ϕ/γ) ∈ X ⊆ w′ by the choice of sets X and w′. Therefore, ϕ/γ /∈ w′
because set w′ is consistent.

Case II: u(a) 6= 0 for at least one agent a ∈ C. Thus, u(a) = y(a) > x(a) by
the choice of function u. Hence, u 6≤C x. Choose w′ to be the terminal state t.

Claim 7 (w, δ, u, w′) ∈M .

Proof of Claim. Consider any formula [D]yψ ∈ w such that δ(a) = [D]yψ for
each agent a ∈ D. By Definition 8 and because w′ = t, it suffices to show that
u ≤D y. Recall that 0 ≤D y because [D]yψ is a formula. Therefore, u ≤D y by
the choice of function u. �
This concludes the proof of the lemma. �

The next lemma is usually referred to as an “induction” or “truth” lemma.

Lemma 11 w  ϕ iff ϕ ∈ w for each state w ∈W and each formula ϕ ∈ Φ.

Proof. We prove the statement by induction on the structural complexity of
formula ϕ. If ϕ is a propositional variable, then the required follows from item 1
of Definition 7 and Definition 9. If formula ϕ is a negation or an implication,
then the statement of the lemma follows from items 2 and 3 of Definition 7,
the induction hypothesis, and the maximality and consistency of set w in the
standard way.

Suppose that formula ϕ has the form [C]xψ.
(⇒) : Assume that [C]xψ /∈ w. Consider any strategy s of coalition C. Define
action profile α of coalition C such that, for each agent a ∈ C,

α(a) = s(a,w0). (18)

By Lemma 10, there is a complete action profile δ, a cost function u ∈ [0,+∞)A,
and a state w′ ∈W t such that α =C δ, (w, δ, u, w′) ∈M , and

either (i) u 6≤C x or (ii) w′ 6= t and ψ/γ /∈ w′. (19)

17



Consider play w, δ, w′. This play satisfies strategy s by Definition 6, the as-
sumption α =C δ, and equation (18). Then, by item 4 of Definition 7, to prove
w 1 [C]xψ, it suffices to show that either (i) u 6≤C x or (ii) w′ 6= t and w′ 1 ψ/γ.
Note that this statement is true by statement (19) and the induction hypothesis.
(⇐) : Suppose that [C]xϕ ∈ w. By Lemma 9, there is a strategy s of coalition
C such that, for each play w0, δ0, u0, w1, . . . , un−1, wn satisfying strategy s, if
w = w0, then

1.
∑n−1
i=0 uiγ

i ≤C x and

2. if wn 6= t, then ϕ/γn ∈ wn.

Therefore, w  [C]xϕ by item 4 of Definition 7 and the induction hypothesis. �

Theorem 1 If X 0 ϕ, then there is a state w of a game such that w  χ for
each χ ∈ X and w 1 ϕ.

Proof. Suppose that X 0 ϕ. Let w be any maximal consistent extension
of set X ∪ {¬ϕ}. Note that w is a state of the canonical game. Then, w  χ
for each χ ∈ X and w  ¬ϕ by Lemma 11. Therefore, w 1 ϕ by Definition 7. �

10 Negative costs

In item 5 of Definition 1, we assumed that cost function u has only non-negative
values. This assumption is significant because the Transitivity axiom of our
logical system does not hold for the games with negative costs. To observe this,
consider the single-agent game depicted in Figure 4 and assume that discount

p

¬p

a aw -1
0

0

a

u
p

2

0

v

Figure 4: A game. The unreachable terminal state t is not shown in the diagram.

factor γ is equal to 1
2 . In state w of this game, agent a has a strategy to maintain

condition p by first transitioning from state w to state u and then looping in
state u indefinitely. The cost of this strategy is

−1 + 2γ + 2γ2 + 2γ3 + · · · = −1 + 1 +
1

2
+

1

4
+ · · · = 1.
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Hence, w  [a]1p by item 4 of Definition 7.
To finish the example, it suffices to show that w 1 [a]1[a]1p. Towards a

contradiction, suppose that w  [a]1[a]1p. Thus, by item 4 of Definition 7,
in state w agent a has a strategy to maintain condition [a]1p. Note that the
strategy cannot transition the game from state w to state v because v 1 p, see
Figure 4. Hence, it must transition the game into state u. Then, u  ([a]1p)/γ
by item 4 of Definition 7. Thus, u  [a]1/γp by Definition 3. Hence, u  [a]2p

by the assumption γ = 1
2 . Then, by item 4 of Definition 7, in state u agent a

has a strategy to maintain condition p at cost 2. Note that the only strategy
in state u to maintain condition p is to loop in state u indefinitely. The cost of
this strategy is

2 + 2γ + 2γ2 + 2γ3 + · · · = 2 + 1 +
1

2
+

1

4
+ · · · = 4,

which is a contradiction because 4 > 2.
Informally, this example exploits the fact that the strategy from state w is

able to “earn” 1 during the transition from w to u and to use it to offset the
cost of looping in state u. The strategy that originates in state u does not have
access to this “earned” money.

11 Achieving in One Step

Language Φ of the proposed logical system could be extended by an additional
modality 〈〈C〉〉xϕ that stands for “coalition C can achieve ϕ in one step using
a strategy with costs at most x”. Here, by a strategy of a coalition C we mean
any function s ∈ ∆C that assigns an action to each member of the coalition.

Just as in Definition 7, we assume that all values represent costs in today’s
money. As a result, the semantics of the modality 〈〈C〉〉xϕ in the definition
below uses formula ϕ/γ instead of ϕ.

Definition 10 w  〈〈C〉〉xϕ if there is an action profile s ∈ ∆C of coalition C
such that for any (w, δ, u, v) ∈M , if s = δC , then u ≤C x and v  ϕ/γ.

A non-trivial property that captures the interplay between modalities [C]xϕ and
〈〈C〉〉xϕ is

〈〈C〉〉x[C]yϕ→ (ϕ→ [C]x+yγϕ).

Note that unlike the axioms of our logical system listed in Section 7, this prop-
erty explicitly incorporates the discount factor γ.

12 Future Money

As we discussed in Section 5, the semantics of our logical system assumes that all
costs in a formula refer to today’s money. One can also consider a future-money
modality JCKxϕ whose semantics would be defined as follows:
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Definition 11 w  JCKxϕ if there is a strategy s of coalition C such that for
any play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play that satisfies strategy s, if w = w0,
then

1.
∑n−1
i=0 uiγ

i ≤C x and

2. if wn 6= t, then wn  ϕ.

Note that the only difference between the definition above and item 4 of Defi-
nition 7 is the absence of division by γn in item 2.

It is interesting to observe that modality JCKxϕ does not satisfy the transi-
tivity axiom either. To show this, let us consider a single-agent game depicted

p

¬p

a aw 0
0

0

a

u
p

1

Figure 5: A game. The unreachable terminal state t is not shown in the diagram.

in Figure 5 and assume that discount factor γ is equal to 1
2 . Note that in state

w agent a has a strategy to maintain condition p by first transitioning to state
u and then looping in state u indefinitely. The total costs of this strategy is

0 + 1γ + 1γ2 + 1γ3 + · · · = 1

2
+

1

4
+

1

8
+ · · · = 1.

Thus, w  JaK1 p. To finish the example, it suffices to show that w 1 JaK1JaK1 p.
Towards a contradiction, suppose that w  JaK1JaK1 p. Thus, by Definition 11,
in state w there is a strategy of agent a to maintain condition p at cost 1. Note
that this strategy from state w can only transition the game into state u, see
Figure 5. Thus, u  JaK1 p by Definition 11. Hence, again by Definition 11, in
state u agent a has a strategy to maintain condition p at cost 1. Note that the
only strategy in state u to maintain condition p is to loop in state u indefinitely.
The cost of this strategy is

1 + 1γ + 1γ2 + 1γ3 + · · · = 1 +
1

2
+

1

4
+ · · · = 2,

which is a contradiction because 2 > 1.
One might wonder if the Transitivity axiom for modality JCKxϕ holds in a

modified form that takes into account the discount factor in one of the following
forms:
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w  JCKx ϕ→ JCKxJCKx/γ ϕ,
w  JCKx ϕ→ JCKx((JCKxϕ)/γ).

As it turns out, neither of these principles is universally true because

w 1 JaK1/2 p→ JaK1/2JaK1 p

for the game depicted in Figure 6. The proof of this is very similar to the one
above.

¬p

a
p
aw 0

0

0

a

u
p

1

p
a0

Figure 6: A game. The unreachable terminal state t is not shown in the diagram.

A transitivity-like property for modality JCKxϕ could be stated if the lan-
guage is further extended by modality JCKkxϕ, which stands for “coalition C has
a strategy to maintain condition ϕ for k steps at costs x”. It can be formally
defined as follows.

Definition 12 w  JCKkxϕ if there is a strategy s of coalition C such that for
any play w0, δ0, u0, w1, . . . , un−1, wn ∈ Play that satisfies strategy s, if w = w0

and n ≤ k, then

1.
∑n−1
i=0 uiγ

i ≤C x and

2. if wn 6= t, then wn  ϕ.

The transitivity-like property that uses modalities JCKxϕ and JCKkxϕ is

JCKxϕ→ JCKkx((JCKxϕ)/γk).

13 Conclusion

In this article we proposed a coalition power logic whose semantics incorporates
discounting. Such a logical system could be potentially applied to investment
strategies, long-term project planning, and policy analysis. The main techni-
cal result is a strongly sound and strongly complete logical system for coalition
strategies with perfect recall. In addition to Sections 10, 11, and 12, an interest-
ing possible direction of future work is to combine the proposed modality with
temporal logic modalities.
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