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1. Introduction

Strategic games could be viewed as abstract mathematical structures. As such,

they can be compared using homomorphisms, as it is common in mathematics.

One can also compare classes of games using game-specific properties such as Nash
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equilibria. Gottlob et al. [2005] suggested to compare classes of games based on the

complexity of their sets of equilibria. In this article, we propose to compare classes

of games by using their sets of pure Nash equilibria. For example, although any set

of two-player strategy profiles is a Nash equilibrium of some game, not each such

set is a set of Nash equilibria of a zero-sum game. Being able to compare different

classes of games would have important implications for understanding the strengths

or limitations of mechanism design, and more broadly, for discovering connections

between seemingly unrelated classes of games.

In this work we consider strategic games with a finite number of players, each

player with a finite number of strategies. We say that the class of zero-sum games

is coarser than the class of all games. In general, we say that a class of games C

is coarser than a class of games D if for any game c ∈ C there is a game d ∈ D

such that games c and d have the same set of Nash equilibria. We say that class C

is strictly coarser than class D if class C is coarser than class D, but not the other

way around. If class C is coarser than class D, and class D is coarser than class C,

then we say that these two classes are Nash-equivalent. In other words, two classes

of games are Nash-equivalent if they have the same sets of Nash equilibria.

Next we use this general framework to investigate how the class of zero-sum

games relates to several classes of games on graphs. In particular, we prove that if

the number of players is greater than 4, polymatrix games are strictly coarser than

zero-sum games. Then we extend the definition of polymatrix game, where each

player simultaneously plays multiple 2-person games, to include the more general

situation where each player simultaneously plays multiple k-person games, which

we call k-polymatrix games. We prove that for every 2 < k ≤ n − 1, the class of

k-polymatrix games is coarser than the class of zero-sum games, and that (n− 1)-

polymatrix games are Nash-equivalent to zero-sum games. We conclude the article

with a conjecture that k-polymatrix games form an increasing chain of classes.
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Although k-polymatrix game is a new notion proposed in this article, polymatrix

games have been widely studied. Howson Jr [1072] and Audet et al. [2006] studied

existence and algorithms for finding mixed equilibria in such games. Govindan and

Wilson [2004] computed equilibria of an arbitrary n-person game by approximating

it with a sequence of polymatrix games. Quintas [1989] gave a characterization of

the set of all mixed Nash equilibria in polymatrix games. Cai et al. [2016] have

shown how linear programming could be used to find mixed Nash equilibria in zero-

sum polymatrix games. Irfan and Ortiz [2014], Proposition 3.8 have shown that

the class of linear-influence games is Nash-equivalent to 2-action polymatrix games.

The polymatrix and k-polymatrix games are also related to graphical games, in

which payoff function of each player (node in a graph) depends only on the actions

of the adjacent nodes Elkind et al. [2006]; Elkind et al. [2007]; Dilkinaet al. [2007];

Daskalakis and Papadimitriou [2006]; Kearns et al. [2001].

2. Preliminaries

In this section we introduce basic notions used throughout the article, illustrate

them with examples, and prove their basic properties.

Definition 1. A frame is a pair (N, {Ai}i∈N ), where

(1) N = {1, 2, . . . , n} is a finite list of “players” for some integer n > 0, and

(2) Ai is a finite nonempty set of “strategies” for each i ∈ N .

Integer n is called the size of the frame.

Definition 2. A game u over a frame F = (N, {Ai}i∈N ) is a set of “utility”

functions u = {ui}i∈N such that ui : A1 × · · · ×An → R for each i ∈ N . The set of

all games over frame F is denoted by G(F).

We often write A1 × · · · × An as
∏

i∈N Ai. The elements of this set are called
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strategy profiles. If s = {si}i∈N is a strategy profile and e = {v1, . . . , vk} is a set of

players, then by projection s|e we mean tuple {svi}i∈e ∈
∏

i≤k Avi .

Definition 3. A strategy profile s ∈
∏

i∈N Ai of a game {ui}i∈N ∈ G(N, {Ai}i∈N )

is a Nash equilibrium if ui(s−i, a) ≤ ui(s) for each player i ∈ N and each strategy

a ∈ Ai.

The set of all Nash equilibria of a game u is denoted by NE(u).

Lemma 1. If game {ui}i∈N ∈ G(N, {Ai}i∈N ) has no Nash equilibria, then there

are at least two sets in family {Ai}i∈N both of which have at least two elements. �

Definition 4. For any frame F = (N, {Ai}i∈N ), a game {ui}i∈N ∈ G(F) is called

a zero-sum game if

∑
i∈N

ui(s) = 0

for each strategy profile s ∈
∏

i∈N Ai. The set of all zero-sum games over frame F

is denoted by Z(F).

Definition 5. For any frame F and any two sets of games C,D ⊆ G(F), let

C �F D if for each game u ∈ C there is a game u′ ∈ D such that NE(u) = NE(u′).

If C �F D, then we say that C is a Nash-coarser and D is a Nash-finer class of

games. Note that �F is a reflexive and transitive relation on subsets of G(F). We

write C ≡F D if C �F D and D �F C, in which case we say that classes C and D

are Nash-equivalent.

Example 1.

Let frame F = ({1, 2}, {Ai}i∈{1,2}) be a two-player frame such that sets A1 and

A2 each have at least two elements. It is easy to see that for any set X ⊆ A1 ×A2

there is a game {ui}i∈{1,2} ∈ G(F) such that NE({ui}i∈{1,2}) = X. At the same
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time, due to the interchangeability theorem for two-player zero-sum games Osborne

and Rubinstein [1994], p.23, there is a set X ⊆ A1×A2 for which there is no zero-sum

game {ui}i∈{1,2} ∈ Z(F) such that NE({ui}i∈{1,2}) = X. Hence, Z(F) �F G(F),

but G(F) �F Z(F).

Definition 6. Let k ≥ 1 be an integer. Game {ui}i∈N ∈ G(N, {Ai}i∈N ) is called

a k-polymatrix game, if for each player i ∈ N and each k-element set e ⊆ N

containing player i, there is such function fe
i :
∏

j∈e Aj → R that

ui(s) =
∑
e3i

fe
i (s|e),

for each strategy profile s ∈
∏

`∈N A`.

Definition 7. For any frame F and any k ≥ 1, let Hk(F) be the set of all k-

polymatrix games over frame F . The games in the set H2(F) are also known as

polymatrix games.

1

1

0

0 1

1

0

1

Fig. 1. Two strategy profiles of the game from Example 2.

Example 2. Let N be {1, 2, 3, 4} and frame F = (N, {Ai}i∈N ) be such that Ai =

{0, 1} for each i ∈ N . We can think about players in this game being vertices of

a tetrahedron and a strategy profile being an assignment of either 0 or 1 to each

vertex of the tetrahedron, see Figure 1. Consider a game in class H3(F) such that

utility function for each vertex is the sum of three functions corresponding to the

three faces of the tetrahedron containing this vertex. A function f corresponding
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to a face is defined in terms of the sum x of all values assigned to the vertices on

the face:

(1) if x is even, then pay-off of each node on the face is 0.

(2) if x = 1, then each node on the face is penalized by 100.

(3) if x = 3, then each node on the face is penalized by 1.

Strategy profile (0, 0, 0, 0) is a Nash equilibrium of this game because under this

strategy profile each player gets pay-off zero, which is the largest possible pay-off

in the game. Strategy profile (0, 0, 1, 1), depicted in Figure 1, left, is not a Nash

equilibrium of this game. Indeed, pay-off of each player using strategy 0 under this

strategy profile is −100 + 0− 100 = −200. The pay-off will increase to 0− 1 + 0 =

−1 for a player who switches the strategy from 0 to 1. After such a switch by a

single player, the strategy profile might become, for example, (1, 0, 1, 1), depicted

in Figure 1, right. It is easy to see that this strategy profile is a Nash equilibrium

of the game. In general, the Nash equilibria of this game are (0, 0, 0, 0), (1, 1, 1, 0),

(1, 1, 0, 1), (1, 0, 1, 1), and (0, 1, 1, 1). In other words, the set of Nash equilibria is

{s ∈ {0, 1}4 : |s| ≡ 0 (mod 3)}, where |s| is the number of 1s in profile s.

The game described in this example belongs to class H3(F). At the same this

game does not belong to class H2(F). In other words, this game is not a polymatrix

game. This follows from Lemma 5 that we prove in Section 4.

We conclude this section with a simple technical observation about Nash equi-

libria of k-polymatrix games that will be used later. The observation is true because

the matching pennies game only requires two strategies.

Lemma 2. For any frame (N, {Ai}i∈N ) of size n ≥ 3 such that there are at least

two sets in family {Ai}i∈N with at least two elements, there is (n − 1)-polymatrix

game in G(N, {Ai}i∈N ) that has no Nash equilibria. �
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3. First Result

In this section we prove our first result relating k-polymatrix and zero-sum games.

Namely, we prove that the class of k-polymatrix games is coarser than the class of

zero-sum games for each k ≥ 2.

Theorem 1. Hk(F) �F Z(F) for each frame F = (N, {Ai}i∈N ) of size n ≥ 2 and

each k ≤ n− 1.

Proof. Consider any game {ui}i∈N ∈ Hk(F). By Definition 5, it suffices to show

that there is a game {u′i}i∈N ∈ Z(F) such that NE({ui}i∈N ) = NE({u′i}i∈N ).

By Definition 6 and the assumption {ui}i∈N ∈ Hk(F), for each player i ∈ N

and each edge e of size k, where i ∈ e, there is a function fe
i :
∏

j∈e Aj → R such

that

ui(s) =
∑
e3i

fe
i (s|e). (1)

Define

u′i(s) = ui(s)−
1

|N | − k

∑
e 63i

∑
j∈e

fe
j (s|e).

First, we show that {u′i}i∈N is a zero-sum game. Indeed, for any strategy profile
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s ∈
∏

i∈N Ai, due to equation (1),

∑
i∈N

u′i(s) =
∑
i∈N

ui(s)−
1

|N | − k

∑
e 63i

∑
j∈e

fe
j (s|e)


=
∑
i∈N

ui(s)−
∑
i∈N

1

|N | − k

∑
e63i

∑
j∈e

fe
j (s|e)

=
∑
i∈N

ui(s)−
1

|N | − k

∑
e

∑
i/∈e

∑
j∈e

fe
j (s|e)

=
∑
i∈N

ui(s)−
1

|N | − k

∑
e

(|N | − k)
∑
j∈e

fe
j (s|e)

=
∑
i∈N

ui(s)−
∑
e

∑
j∈e

fe
j (s|e)

=
∑
i∈N

ui(s)−
∑
j∈N

∑
e3j

fe
j (s|e)

=
∑
i∈N

ui(s)−
∑
j∈N

uj(s) = 0.

Next we show that NE({ui}i∈N ) = NE({u′i}i∈N ). Indeed, for any strategy profile

s, any player i ∈ N , and any strategy a ∈ Ai,

u′i(s)− u′i(s−i, a) =

ui(s)−
1

|N | − k

∑
e63i

∑
j∈e

fe
j (s|e)


−

ui(s−i, a)− 1

|N | − k

∑
e 63i

∑
j∈e

fe
j ((s−i, a)|e)


=

ui(s)−
1

|N | − k

∑
e63i

∑
j∈e

fe
j (s|e)


−

ui(s−i, a)− 1

|N | − k

∑
e 63i

∑
j∈e

fe
j (s|e)


= ui(s)− ui(s−i, a).

Hence, u′i(s) ≤ u′i(s−i, a) if and only if ui(s) ≤ ui(s−i, a) for each strategy profile

s, each player i ∈ N , and each strategy a ∈ Ai. Therefore, by Definition 3, games

{ui}i∈N and {u′i}i∈N have the same set of Nash equilibria.
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4. Second Result

In this section we show that is a frame F for which the set of zero-sum games is

not Nash-coarser than the set of polymatrix games. Together with Theorem 1 this

shows that the class of polymatrix games over frame F is strictly coarser than the

class of zero-sum games.

Theorem 2. For each n ≥ 4 there is a frame F of size n such that

Z(F) �F H2(F).

To prove the theorem, for any given n ≥ 4, we define frame F to be (N, {Ai}i∈N ),

where N = {1, 2, 3, 4, . . . , n} and Ai = {0, 1} for each i ∈ N . Next we define game

{u′i}i∈N ∈ G(F). For any strategy profile s = {si}i∈N , let

u′i(s) =



2− n, if si = 0 and |s| = n− 2,

2, if si = 1 and |s| = n− 2,

|s|, if si = 0 and |s| 6= n− 2,

|s| − n, if si = 1 and |s| 6= n− 2,

(2)

where |s| is the number of 1s in the strategy profile s. Intuitively, game {u′i}i∈N

could be described as follows:

(1) if |s| = n− 2, then each player who picked strategy 0 pays 1 unit to each player

who picked strategy 1,

(2) if |s| 6= n− 2, then each player who picked strategy 1 pays 1 unit to each player

who has chosen strategy 0.

Since the pay-offs in the game {u′i}i∈N consist in payments between players, the

following lemma holds.

Lemma 3. {u′i}i∈N ∈ Z(F). �
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The next lemma describes the set of Nash equilibria of the game {u′i}i∈N .

Lemma 4. NE({u′i}i∈N ) = {s ∈ {0, 1}n | |s| ≡ 0 (mod (n− 1))}.

Proof. Consider an arbitrary strategy profile s = {si}i∈N ∈ {0, 1}n. We consider

the following five cases separately:

(1) |s| = 0. Consider any i0 ≤ n. Note that |(s−i0 , 1)| = 1 6= n−2 and |s| = 0 6= n−2

because n ≥ 4. To show that profile s is a Nash equilibrium, note that, due to

equation (2),

u′i0(s−i0 , 1) = |(s−i0 , 1)| − n = 1− n ≤ 1− 4 < 0 = |s| = u′i0(s).

(2) 1 ≤ |s| ≤ n− 3. Consider any i1 ≤ n such that si1 = 1. Note that |(s−i1 , 0)| ≤

n − 4. To show that profile s is not a Nash equilibrium, note that, due to

equation (2) and because |(s−i1 , 0)| 6= n− 2 and |s| 6= n− 2,

u′i1(s−i1 , 0) = |(s−i1 , 0)| ≥ 0 > −3 = (n− 3)− n ≥ |s| − n = u′i1(s).

(3) |s| = n − 2. Consider any i0 ≤ n such that si0 = 0. Then, |(s−i0 , 1)| = n − 1.

To show that profile s is not a Nash equilibrium, note that, due to equation (2)

and because n ≥ 4,

u′i0(s−i0 , 1) = |(s−i0 , 1)| − n = (n− 1)− n = −1 > 2− n = u′i0(s).

(4) |s| = n − 1. Consider any i0, i1 ≤ n such that si0 = 0 and si1 = 1. Then,

|(s−i0 , 1)| = n and |(s−i1 , 0)| = n− 2. To show that profile s is a Nash equilib-

rium, note that, due to equation (2) and because n ≥ 4,

u′i0(s−i0 , 1) = |(s−i0 , 1)| − n = n− n = 0 < n− 1 = |s| = u′i0(s),

u′i1(s−i1 , 0) = 2− n < (n− 1)− n = |s| − n = u′i1(s).

(5) |s| = n. Consider any i1 ≤ n. Note that si1 = 1 because |s| = n. Also,
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|(s−i1 , 0)| = n − 1. To show that profile s is not a Nash equilibrium, note

that, due to equation (2) and because n ≥ 4,

u′i1(s−i1 , 0) = |(s−i1 , 0)| = n− 1 > n− n = |s| − n = u′i1(s).

The next lemma captures a technical but important property of polymatrix

games. Namely, it shows that the set described in the statement of Lemma 4 cannot

be the set of Nash equilibria of a polymatrix game.

Lemma 5. For any game {ui}i∈N ∈ H2(F), if

{s ∈ {0, 1}n | |s| ≡ 0 (mod (n− 1))} ⊆ NE({ui}i∈N ),

then (1, 1, . . . , 1) ∈ NE({ui}i∈N ).

Proof. Suppose that (1, 1, . . . , 1) /∈ NE({ui}i∈N ). Thus, by Definition 3, there is

a player i ∈ N such that ui((1, 1, . . . , 1)−i, 0) > ui(1, 1, . . . , 1). Without loss of

generality, assume that i = 1. Hence,

u1(0, 1, 1, . . . , 1) > u1(1, 1, 1, . . . , 1). (3)

Note that n + 1 strategy profiles

(0, 0, 0, . . . , 0), (0, 1, 1, . . . , 1), (1, 0, 1, . . . , 1), (1, 1, 0, . . . , 1), . . . , (1, 1, 1, . . . , 0)

are Nash equilibria of game {ui}i∈N by the assumption of the lemma. Thus, by
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Definition 3,

u1(0, 0, 0, . . . , 0) ≥ u1((0, 0, 0, . . . , 0)−1, 1),

u1(0, 1, 1, . . . , 1) ≥ u1((0, 1, 1, . . . , 1)−1, 1),

u1(1, 0, 1, . . . , 1) ≥ u1((1, 0, 1, . . . , 1)−1, 0),

u1(1, 1, 0, . . . , 1) ≥ u1((1, 1, 0, . . . , 1)−1, 0),

. . .

u1(1, 1, 1, . . . , 0) ≥ u1((1, 1, 1, . . . , 0)−1, 0).

In other words,

u1(0, 0, 0, . . . , 0) ≥ u1(1, 0, 0, . . . , 0),

u1(0, 1, 1, . . . , 1) ≥ u1(1, 1, 1, . . . , 1),

u1(1, 0, 1, . . . , 1) ≥ u1(0, 0, 1, . . . , 1),

u1(1, 1, 0, . . . , 1) ≥ u1(0, 1, 0, . . . , 1), (4)

. . .

u1(1, 1, 1, . . . , 0) ≥ u1(0, 1, 1, . . . , 0).

Recall that {ui}i∈N ∈ H2(F) by the assumption of the lemma. Hence, by Def-

inition 6, for each edge incident to node i, utility function ui can be written as a

sum of pay-off functions. In particular, there are functions fi : {0, 1} × {0, 1} → R

such that

u1(s) =

n∑
i=2

fi(s1, si). (5)

Note that here, in the case of polymatrix games, we use slightly simplified notations

for functions fi than in Definition 6, that deals with a more general setting of k-

polymatrix games for an arbitrary k.
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Thus, from inequalities (4) and equation (5),

f2(0, 0) + f3(0, 0) + · · ·+ fn(0, 0) ≥ f2(1, 0) + f3(1, 0) + · · ·+ fn(1, 0),

f2(0, 1) + f3(0, 1) + · · ·+ fn(0, 1) ≥ f2(1, 1) + f3(1, 1) + · · ·+ fn(1, 1),

f2(1, 0) + f3(1, 1) + · · ·+ fn(1, 1) ≥ f2(0, 0) + f3(0, 1) + · · ·+ fn(0, 1),

f2(1, 1) + f3(1, 0) + · · ·+ fn(1, 1) ≥ f2(0, 1) + f3(0, 0) + · · ·+ fn(0, 1),

. . .

f2(1, 1) + f3(1, 1) + · · ·+ fn(1, 0) ≥ f2(0, 1) + f3(0, 1) + · · ·+ fn(0, 0).

Summing the left and the right hand sides of the above n + 1 inequalities and

combining terms one gets

n∑
j=2

(fj(0, 0) + fj(0, 1) + fj(1, 0) + (n− 2)fj(1, 1))

≥
n∑

j=2

(fj(1, 0) + fj(1, 1) + fj(0, 0) + (n− 2)fj(0, 1)) .

Hence, by cancelling equal terms on both sides and factoring out n− 3,

(n− 3)

n∑
j=2

fj(1, 1) ≥ (n− 3)

n∑
j=2

fj(0, 1).

Recall that n ≥ 4 by the assumption of the theorem. Hence,

n∑
j=2

fj(1, 1) ≥
n∑

j=2

fj(0, 1).

Then, equality (5) implies that u1(1, 1, 1, . . . , 1) ≥ u1(0, 1, 1, . . . , 1), which is a con-

tradiction with inequality (3).

To finish the proof of Theorem 2, note that {u′i}i∈N ∈ Z(F) by Lemma 3. At

the same time, by Lemma 4 and Lemma 5 there is no game {ui}i∈N ∈ H2(F) such
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that NE({u′i}i∈N ) = NE({ui}i∈N ). Therefore, Z(F) � H2(F) by Definition 5.

5. Third Result

In Theorem 1 we have shown that for any frame of size n, the class of k-polymatrix

games is coarser than the class of zero-sum games for each k ≤ n − 1. In The-

orem 2 we have shown that, in the case k = 2, zero-sum games are not coarser

than polymatrix games. In other words, classes of polymatrix and zero-sum games

are not Nash-equivalent. Our last, and probably the most interesting observation is

that classes of (n− 1)-polymatrix and zero-sum games are Nash-equivalent. Due to

Theorem 1, we only need to prove the following result.

Theorem 3. Z(F) �F Hn−1(F) for each frame F of size n ≥ 3.

The rest of this section is dedicated to the proof of Theorem 3. Let F =

(N, {Ai}i∈N ), where N = {1, . . . , n}. Before starting the proof, we introduce two

technical notions and prove an auxiliary proposition.

Definition 8. For each strategy profile s ∈
∏

i∈N Ai and each j ∈ N , let (s−j , ∗)

be the cylinder set {(s−j , x) | x ∈ Aj}.

Definition 9. For any strategy profiles s, s′ ∈
∏

i∈N Ai let h(s, s′) be the Hamming

distance between tuples s and s′. The Hamming distance H(X,Y ) between nonempty

sets X,Y ⊆
∏

i∈N Ai is defined as usual:

H(X,Y ) = min{h(s, s′) | s ∈ X, s′ ∈ Y }.

H(X,Y ) is well-defined because set
∏

i∈N Ai is finite by Definition 2.

Proposition 1. For any profile s = {si}i∈N ∈
∏

i∈N Ai and any nonempty set

X ⊆
∏

i∈N Ai, if H({s}, X) > 0, then H((s−j , ∗), X) ≥ H({s}, X) − 1 for every

j ∈ N . �
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Proposition 2. For any strategy profile s = {si}i∈N ∈
∏

i∈N Ai and any nonempty

set X ⊆
∏

i∈N Ai if H({s}, X) > 0, then there is a player j ∈ N and strategy q ∈ Aj

such that H((s−j , q), X) = H({s}, X)− 1.

Proof. By Definition 9, there exists a profile x = {xi}i∈N ∈ X such that

H({s}, X) = h(s, x). Then, assumption H({s}, X) > 0 implies that strategy pro-

files s and x differ for at least one player j ∈ N . Let q = xj . Then, h((s−j , q), x) =

h(s, x)− 1. Thus,

H({(s−j , q)}, X) ≤ h((s−j , q), x) = h(s, x)− 1 = H({s}, X)− 1.

Next, we show that H({(s−j , q)}, X) = H({s}, X)− 1. Suppose that

H({(s−j , q)}, X) < H({s}, X)− 1. (6)

By Definition 9, there exists a strategy profile y ∈ X such that h((s−j , q), y) =

H({(s−j , q)}, X). Hence, by the triangle inequality and inequality (6),

H({s}, X) ≤ h(s, y) ≤ h(s, (s−j , q)) + h((s−j , q), y) = 1 + h((s−j , q), y)

= 1 + H({(s−j , q)}, X) < 1 + H({s}, X)− 1 = H({s}, X),

which is a contradiction.

We are now ready to prove Theorem 3.

Proof. Consider any zero-sum game u′ = {u′i}i∈N ∈ Z(F). By Definition 5, it

suffices to show that there is a game u ∈ Hn−1(F) such that NE(u′) = NE(u).

Indeed, if set NE(u′) is empty, then the family of sets {Ai}i∈N has at least two

sets with at least two elements, by Lemma 1. Hence, there is a game u ∈ Hn−1(F)

such that NE(u′) = ∅ = NE(u) by Lemma 2. In the rest of the proof we assume

that set NE(u′) is nonempty.
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By Definition 2, set Ai is finite for each i ∈ N . Thus, there is a real number

C > 0 such that

∀i ∈ N ∀s ∈
∏
k

Ak, |u′i(s)| < C. (7)

For any player j ∈ N and each strategy profile s ∈
∏

k∈N Ak, let

f j(s) = −max
q∈Aj

u′j(s−j , q)− 2C(|N | − 1) ·H ((s−j , ∗), NE(u′)) . (8)

Function f j(s) is well-defined because set Aj is nonempty by Definition 2 and

set NE(u′) is nonempty due to an assumption earlier in this proof.

For each player i ∈ N and each strategy profile s ∈
∏

k∈N Ak, let

ui(s) =
∑
j 6=i

f j(s). (9)

Let u = {ui}i∈N .

Claim 1. u ∈ Hn−1(F).

Proof. By Definition 6 and equation (9), it suffices to show that function f j(s)

does not depend on the j-th component of strategy profile s. In other words, that

f j(s) = f j(s−j , a) for each player j ∈ N , each strategy profile s ∈
∏

k∈N Ak, and

each strategy a ∈ Aj . The last statement follows from equation (8).

Claim 2. u′i(s) = ui(s) for any strategy profile s ∈ NE(u′) and any i ∈ N .

Proof. For any s ∈ NE(u′), equations (9) and (8) imply that

ui(s) =
∑
j 6=i

f j(s)

=
∑
j 6=i

(
−max

q∈Aj

u′j(s−j , q)− 2C(|N | − 1) ·H ((s−j , ∗), NE(u′))

)
.

Assumption s ∈ NE(u′) implies that H ((s−j , ∗), NE(u′)) = 0. Thus,

ui(s) =
∑
j 6=i

−max
q∈Aj

u′j(s−j , q).
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Therefore,

ui(s) =
∑
j 6=i

−max
q∈Aj

u′j(s−j , q) =
∑
j 6=i

−u′j(s) = u′i(s),

because s ∈ NE(u′) and u′ is a zero-sum game.

We are now ready to show that NE(u′) = NE(u).

(⊆) : Suppose that s ∈ NE(u′). We will show that s ∈ NE(u). Consider any player

i ∈ N and any strategy q ∈ Ai. It suffices to show that ui(s) ≥ ui(s−i, q). We

denote (s−i, q) by s′. Then, by Claim 2 and the assumption s ∈ NE(u′),

ui(s) = u′i(s) ≥ u′i(s−i, q) = u′i(s
′). (10)

At the same time, because u′ is a zero-sum game,

u′i(s
′) =

∑
j 6=i

−u′j(s′) ≥
∑
j 6=i

−max
r∈Aj

u′j(s
′
−j , r)

≥
∑
j 6=i

(
−max

r∈Aj

u′j(s
′
−j , r)− 2C(|N | − 1) ·H

(
(s′−j , ∗), NE(u′)

))
.

Then, taking into account equations (8) and (9) and because s′ = (s−i, q),

u′i(s
′) ≥

∑
j 6=i

f j(s′) = ui(s
′) = ui(s−i, q).

Therefore, ui(s) ≥ ui(s−i, q) by equation (10).

(⊇) : Consider any strategy profile s such that s /∈ NE(u′), it suffices to show that

s 6∈ NE(u). First, we consider the special case when for each i ∈ N ,

H ((s−i, ∗), NE(u′)) = 0. (11)

Note that the left-hand-side of the above equation is well-defined due to the as-

sumption in the beginning of the proof of the theorem that set NE(u′) is not

empty.

Assumption s /∈ NE(u′) implies that there is player j ∈ N and strategy p ∈ Aj

such that u′j(s) < u′j(s−j , p). Note that equality (11) implies that there is strategy
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q ∈ Aj such that (s−j , q) ∈ NE(u′). Hence,

u′j(s) < u′j(s−j , p) ≤ u′j(s−j , q). (12)

Thus, due to equality (9), equality (8), equality (11), the assumption that u′ is

a zero-sum game, inequality (12), and Claim 2, and the assumption (s−j , q) ∈

NE(u′),

uj(s)
(9)
=
∑
i6=j

f i(s)

(8)
=
∑
i 6=j

(
−max

r∈Aj

u′j(s−j , r)− 2C(|N | − 1) · H ((s−j , ∗), NE(u′))

)
(11)
=
∑
i 6=j

−max
r∈Ai

u′i(s−i, r)

≤
∑
i 6=j

−u′i(s) = u′j(s)
(12)
< u′j(s−j , q) = uj(s−j , q).

Therefore, s /∈ NE(u). This concludes the proof in the special case when equal-

ity (11) holds for each player i ∈ N .

We now can assume that there is at least one player i ∈ N for which equality (11)

does not hold. We denote such player by j. Thus,

H ({s}, NE(u′)) ≥ H ((s−j , ∗), NE(u′)) > 0. (13)

Thus, by Proposition 2, there exist a player m ∈ N and a strategy q ∈ Am such

that

H({(s−m, q)}, NE(u′)) = H ({s}, NE(u′))− 1. (14)

Hence, for each player i ∈ N , due to the choice of m, by Proposition 1,

H((s−i, ∗), NE(u′)) ≥ H ({s}, NE(u′))− 1

= H({(s−m, q)}, NE(u′))

≥ H(((s−m, q)−i, ∗), NE(u′)). (15)
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Claim 3. There is a player i ∈ N such that

H((s−i, ∗), NE(u′)) > H(((s−m, q)−i, ∗), NE(u′)).

Proof. By inequality (13), we have H ({s}, NE(u′)) > 0. We consider the following

two cases separately:

Case 1: H ({s}, NE(u′)) = 1. Thus, H({(s−m, q)}, NE(u′)) = 0 by inequality (14).

Hence, H(((s−m, q)−i, ∗), NE(u′)) = 0 for each player i ∈ N . Recall that we have

previously chosen j that satisfies inequality (13). Consider i = j. Thus, by inequal-

ity (13),

H((s−j , ∗), NE(u′)) > 0 = H(((s−m, q)−j , ∗), NE(u′)).

Case 2: H ({s}, NE(u′)) ≥ 2. Hence, H({(s−m, q)}, NE(u′)) ≥ 1 by equality (14).

Thus, by Proposition 2, there exist m′ ∈ N and q′ ∈ Am′ such that

H({((s−m, q)−m′ , q′)}, NE(u′)) = H({(s−m, q)}, NE(u′))− 1.

Hence, by Proposition 1 and equation (14),

H((s−m′ , ∗), NE(u′)) ≥ H ({s}, NE(u′))− 1

= H({(s−m, q)}, NE(u′))

> H({(s−m, q)}, NE(u′))− 1

= H({((s−m, q)−m′ , q′)}, NE(u′)).

Let i be player m′. This concludes the proof of the claim.

Let j1 denote i ∈ N whose existence is proven in Claim 3. Note that follows

from the statement of Claim 3 that j1 6= m. Then,

H ((s−j1 , ∗), NE(u′)) ≥ H (((s−m, q)−j1 , ∗), NE(u′)) + 1. (16)
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Hence, by equation (9) and equation (8),

um(s) =
∑
j 6=m

f j(s)

=
∑
j 6=m

(
−max

p∈Aj

u′j(s−j , p)− 2C(|N | − 1) · H ((s−j , ∗), NE(u′))

)

=
∑

j 6=m,j1

(
−max

p∈Aj

u′j(s−j , p)− 2C(|N | − 1) · H ((s−j , ∗), NE(u′))

)
− max

p∈Aj1

u′j1(s−j1 , p)− 2C(|N | − 1) · H ((s−j1 , ∗), NE(u′)) .

(15)

≤
∑

j 6=m,j1

(
−max

p∈Aj

u′j(s−j , p) − 2C(|N | − 1) · H(((s−m, q)−j , ∗), NE(u′))

)
− max

p∈Aj1

u′j1(s−j1 , p)− 2C(|N | − 1) · H((s−j1 , ∗), NE(u′))

(16)

≤
∑

j 6=m,j1

(
−max

p∈Aj

u′j(s−j , p) − 2C(|N | − 1) · H(((s−m, q)−j , ∗), NE(u′)))

)
− max

p∈Aj1

u′j1(s−j1 , p)− 2C(|N | − 1) · (H (((s−m, q)−j1 , ∗), NE(u′)) + 1)

=
∑
j 6=m

(
−max

p∈Aj

u′j(s−j , p)− 2C(|N | − 1) · H (((s−m, q)−j , ∗), NE(u′))

)
−2C(|N | − 1). (17)

Next, note that by the triangle inequality and the choice of C, for any player

j ∈ N ,

max
p∈Aj

u′j((s−m, q)−j , p)− max
p∈Aj1

u′j(s−j1 , p)

≤
∣∣∣∣max
p∈Aj

u′j((s−m, q)−j , p)− max
p∈Aj1

u′j(s−j1 , p)

∣∣∣∣
≤
∣∣∣∣max
p∈Aj

u′j((s−m, q)−j , p)

∣∣∣∣+

∣∣∣∣max
p∈Aj1

u′j(s−j1 , p)

∣∣∣∣ < C + C = 2C. (18)
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Thus, by equation (17),

um(s)

≤
∑
j 6=m

(
−max

p∈Aj

u′j(s−j , p) − 2C(|N | − 1) · H (((s−m, q)−j , ∗), NE(u′))

)
−2C(|N | − 1)

=
∑
j 6=m

(
−max

p∈Aj

u′j((s−m, q)−j , p) − 2C(|N | − 1) · H (((s−m, q)−j , ∗), NE(u′))

)

+
∑
j 6=m

(
max
p∈Aj

u′j((s−m, q)−j , p)− max
p∈Aj

u′j(s−j , p)

)
− 2C(|N | − 1)

(18)
<
∑
j 6=m

(
−max

p∈Aj

u′j((s−m, q)−j , p) − 2C(|N | − 1) · H (((s−m, q)−j , ∗), NE(u′))

)
+2C(|N | − 1)− 2C(|N | − 1)

=
∑
j 6=m

(
−max

p∈Aj

u′j((s−m, q)−j , p) − 2C(|N | − 1) · H (((s−m, q)−j , ∗), NE(u′))

)
(8)
=
∑
j 6=m

f j(s−m, q)
(9)
= um(s−m, q).

Therefore, s /∈ NE(u).

6. The Conjecture

By Theorem 1, Theorem 2, and Theorem 3, for any n ≥ 4 there is a frame F such

that Z(F) �F H2(F) and Z(F) ≡F Hn−1(F). Thus, for any n ≥ 4 there is a frame

F such that

H2(F) 6≡F Hn−1(F).

Moreover, for any frame F ,

H2(F) �F H3(F) �F · · · �F Hn−1(F)

because any game in class Hk−1(F) can be made into a game in class Hk(F) by

adding “dummy” arguments to functions fe
i from Definition 6.
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We make a conjecture that for each n ≥ 4 there is a frame F such that

H2(F) 6≡F H3(F) 6≡F · · · 6≡F Hn−1(F).

7. Conclusion

In this article we introduced a new way to compare classes of games based on the

richness of the sets of Nash equilibria of these classes. We generalized the class

of polymatrix games to the class of k-polymatrix games. The original polymatrix

games are 2-polymatrix games. Also, we proved that for games with n players,

class (n−1)-polymatrix games is equivalent, in our sense, to zero-sum games, while

the class of 2-polymatrix games is not. Although the results in this article are

stated in terms of Nash equilibria, they hold for strict Nash equilibria too. These

results highlight the limitations on the possible sets of Nash equilibria in different

classes of games, and therefore they are relevant to mechanism design. Finally, we

made a conjecture that the classes of k-polymatrix games are not equivalent for all

2 ≤ k ≤ n− 1.

Although in this article we defined the notions of coarser, strictly coarser, and

Nash-equivalent classes based on sets of pure Nash equilibria, similar relations can

be defined using mixed equilibria. The first and the second results in this article

holds for mixed-equilibria-based coarser relation, which can be shown with through

a straightforward modification of the proofs of Theorem 1 and Theorem 2. Whether

the third result holds for mixed equilibria remains an open question.
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