
On Composition of Bounded-Recall Plans

Kaya Deuser

Vassar College, Poughkeepsie, New York, USA

Pavel Naumov
King’s College, Wilkes-Barre, Pennsylvania, USA

Abstract
The article studies the ability of agents with bounded memory to execute con-

secutive composition of plans. It gives an upper limit on the amount of memory
required to execute the composed plans and shows that the limit cannot be im-
proved. Furthermore, the article shows that there are, essentially, no other univer-
sal properties of plans for bounded-recall agents expressible through the relation
“there is a plan for an agent with a given memory size to navigate from one given
set of states to another”.
Keywords: working memory; plan; navigability; bounded-recall; Mealy
machine; composition; logic; axiomatization

1. Introduction

In this article we study how working memory capacity affects ability of agents
to execute a plan of actions. Although the capacity of the human brain is enor-
mous, only a very limited amount of it, called “working memory” is used to make
decisions. In fact, in some situations animals have a larger capacity of working
memory than humans.

1.1. Inoue and Matsuzawa Experiment
In their experiments, Inoue andMatsuzawa [1] present chimpanzees with num-

bers 1, 2, . . . , 9 randomly placed on a computer screen. Once a chimpanzee touches

Email addresses: kdeuser@vassar.edu (Kaya Deuser), pgn2@cornell.edu (Pavel
Naumov)

Preprint submitted to Artificial Intelligence October 3, 2020

number 1, the number disappears and the rest of the numbers are replaced with
white squares. The chimpanzee is then expected to touch the squares in the or-
der they had been numbered. Figure 1 illustrates1 this experiment. We use letters
a, . . . , i to denote the various positions on the screen. In our example, originally
these positions display numbers 5, 2, 6, 4, 9, 1, 7, 8, and 3 respectively. Once
the chimpanzee touches position f of number 1, this position becomes dark and
the rest of the positions become white. This transition is shown on the figure by a
directed edge labeled with f . Next, the chimpanzee is expected to touch position
b, where number 2 used to be, then position i, and so on. In their experiments,
Inoue and Matsuzawa observed that one of the chimpanzees, named Ayumu, was
able to correctly touch the positions of all numbers 1 through 9 [1, Supplementary
Movie S1]. In tests with just 5 numbers, Ayumu outperformed human subjects on
accuracy [1].

5
2
6
4
9
1
7
8
3

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

…

f b ei

a
b
c
d
e
f
g
h
i

… h

a
b
c
d
e
f
g
h
i

Figure 1: Inoue and Matsuzawa Experiment.

Inoue and Matsuzawa [1] refer to the chimpanzees’ ability to remember the
positions of numbers on the screen as working memory. At the same time, Car-
ruthers [2] points to a distinction between short-term memory and working mem-
ory. Short-termmemory requires no attention, but can be used to store information
for only up to about two seconds. Working memory requires attention, but can be
used to store information for longer periods of time. Since Inoue and Matsuzawa’s
experiment lasts for about two seconds, Carruthers [2] argues that there is no clear
reason to use the term “working memory” rather than “short-term memory” while
describing this experiment. However, following the original work of Inoue and

1Figure 1 depicts a successful run of the experiment in which the chimpanzee touches all squares
correctly. If this illustration were to be treated more formally, a failure state and transitions to the
failure state would need to be added to the diagram.

2

Matsuzawa [1] we use the term “working memory”.

/ e

…

q

/ f

5
2
6
4
9
1
7
8
3

/ b

/ i / h

/ e

Figure 2: One-State Mealy Machine.

1.2. Mealy Machines and Worlds
In this article, to formally capture the abilities of agents with limited working

memory, we represent agents as Mealy machines [3]. These machines determine
an output (action) based on the current state and the current input (observation).
Although other formalisms (for example, Moore machines [4] or random access
memory machines) could be used instead, Mealy machine notations allow us to
express properties of agents with limited working memory more elegantly. We
use the size (number of states) of a Mealy machine required to accomplish a task
as a measure of the size of the working memory needed. Note that to accomplish
the task depicted in Figure 1, one actually needs only a single-stateMealymachine.
An example of this machine is given in Figure 2. This machine contains a single
state q, which is also the initial state of the machine. Possible transitions from state
q back to the same state are denoted by the labeled directed edges. Each label has
the form x∕y where x is the current input (observation) of the machine and y is
the output (action). For example, the left-most edge on this figure shows that if the
machine observes the initial configuration of the numbers, then it touches position
f on the screen.

Although the Mealy machine in Figure 2 has only one state, we do not claim
that in Inoue and Matsuzawa’s experiment the agent does not need any working

3

5
2
6
4
9
1
7
8
3

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

…

f b ei

a
b
c
d
e
f
g
h
i

… h

a
b
c
d
e
f
g
h
i

4
3
9
5
8
2
6
7
1

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

…
f

a
b
c
d
e

g
h
i

a
b
c
d
e
f
g
h
i

i f cb

a
b
c
d
e
f
g
h
i

… e

a
b
c
d
e
f
g
h
i

7
1
8
3
9
6
5
2
4

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

…

b h ed

a
b
c
d
e
f
g
h
i

… c

a
b
c
d
e
f
g
h
i

…

…

X Y

Figure 3: A fragment of the world from Inoue and Matsuzawa’s experiment.

4

memory to correctly touch the positions in the given order. Figure 2 depicts the
machine that can do this test for a specific configuration of the numbers on the
screen. However, chimpanzee Ayumu can do it for any configuration. In other
words, Ayumu can navigate from any of the states in set X to a state in set Y of
the world partially depicted in Figure 3. This world has total of 10! + 1 states,
of which only 21 are shown in the figure. Set X consists of 9! states that are
the possible initial states of the experiment. Only three of these states are shown
on the diagram. These states represent the different initial configurations of the
numbers on the screen in the beginning of the experiment. If the chimpanzee
touches the correct position in one of the initial states, the world transitions to
the next state depicted to the right of the initial state. If the chimpanzee touches a
wrong position, the world transitions to a “failure” state fromwhich there is no way
out. The failure state, the transitions into the failure state, and the loop transitions
from the failure state back into the failure state are not shown in Figure 3. Once
the world transitions into one of the states in set Y , it will remain there no matter
which position is touched. The corresponding loop transitions are also not shown
in Figure 3. The dashed (but not the dotted) lines between states on the diagram
represent states indistinguishable to the agent. For example, all initial states in set
X are distinguishable, while all states in set Y are indistinguishable.

An example of a Mealy machine that can navigate from any of the states in set
X to a state in set Y is depicted in Figure 4. This machine has one initial state q
and 9! “working” states. From the initial state the machine transitions to one of
the working states, depending on the configurations of the numbers on the screen
it observes. It can then accomplish its task in the working state, similarly to the
machine from Figure 2. Although our formal definition of a Mealy machine, given
later, requires the machine to specify its actions in each state of the world, for the
sake of simplicity, the diagram in Figure 4 does not specify how the machine acts
in the failure state.

1.3. Main Contribution
In this article we study the ternary relation X ⊳n Y that stands for “there is a

Mealy machine of size at most n that can navigate from each of the states in set X
to a state in set Y of a given world”. Since we allow for some states to be indis-
tinguishable, it will be convenient to assume that X and Y are sets of equivalence
classes of states rather then sets of states. In other words, if set X (or set Y) con-
tains a state q, then it also must contain any state that the agent cannot distinguish
from state q.

5

/ e

…

/ b

/ i / h

/ e

/ f

5
2
6
4
9
1
7
8
3

q

/ i

/ b

…

…

4
3
9
5
8
2
6
7
1

7
1
8
3
9
6
5
2
4

/ c

…

/ f

/ b / e

/ c

/ e

…

/ h

/d / c

/ e

Figure 4: Mealy machine for Inoue and Matsuzawa experiment.

6

The most interesting property of this relation is captured by what we call the
Composition axiom: X ⊳n Y → (Y ⊳k Z → X ⊳n+k Z). It states that if there
is a Mealy machine of size n that can navigate from set X to set Y and a Mealy
machine of size k that can navigate from set Y to set Z, then there is a Mealy
machine of size n + k that can navigate from set X to set Z. Recall that a Mealy
machine is just one way to capture the agent’s memory size. In practice people
usually describe memory size in bits rather than number of states. A machine that
has m bits of memory is a 2m-state machine. An n-state machine needs ⌈log2 n⌉
bits of memory. Thus, another way to state the Composition axiom is: if one needs
m1 bits of memory to navigate fromX to Y andm2 bits of memory to navigate from
Y toZ, then one can navigate fromX toZ using ⌈log2(2m1+2m2)⌉ bits of memory.

The Composition axiom states that one can navigate using that much memory,
but does one actually need that muchmemory? In some cases an agent can navigate
from X to Z using less than ⌈log2(2m1 + 2m2)⌉ bits of memory. For example, if X
is a subset ofZ, then no matter how hard it is to navigate fromX to Y and from Y
toZ, no memory is required to navigate fromX toZ. We call this observation the
Reflexivity axiom: X ⊳1Z, whereX ⊆ Z. The subscript of this formula refers to
a memoryless single-state Mealy machine.

In Theorem 1, we show that in general an agent requires all ⌈log2(2m1 + 2m2)⌉
bits of memory to navigate. In fact, we show that statement

X ⊳n Y → (Y ⊳k Z → X ⊳n+k−1 Z) (1)

is not universally true even when sets X, Y , and Z are singletons. This, leaves
a question if there are any other ways to generalize the Composition axiom that
will keep it universally true. In this article we answer this question by giving a
complete axiomatization of all universal properties of the relation X ⊳n Y . This
axiomatization includes the Composition axiom, the Reflexivity axiom, and two
more axioms. A preliminary version of this work, without proofs, appeared in [5].

1.4. Literature Review
Finite state machines have been previously used in game theory to model play-

ers with bounded rationality in iterative strategic games [6, 7, 8, 9, 10], to model
the evolution of rational players [11], to analyze two-armed Bernoulli bandit prob-
lems [12], to model AI agents behavior in video games [13], and to specify AI
agents for border patrol [14]. Kanovich, Kirgin, Nigam, and Scedrov proved NP-
completeness of a security problem in collaborative systems with bounded-recall
agents [15]. Nikolaidis, Hsu, and Srinivasa proposed a bounded-memory model

7

that captures human adaptive behaviors and used it to help robots to interact with
humans in hybrid human-machine environments [16].

Most of the above papers represent finite state machines asMoore machines [4]
whose output is determined solely by the current state. In the current article we
focus on Mealy machines because they yield a more elegant logical system for
reasoning about navigability. Mealy machines have been previously used in circuit
design [17], in machine learning [18, 19, 20], and for software specification [21,
22].

There have also beenmanyworks on logical systems for reasoning about strate-
gies. In our paper [23] we considered relationsX⊳1Y andX⊳∞Y for navigability
by no recall and perfect recall strategies. Additionally, in [24] we gave a complete
axiomatization of relation X ⊳Z Y , which stands for “there is a no recall strategy
to navigate from set X to set Y using only intermediate states in set Z”. Oth-
ers captured properties of navigability using modal language instead of relations.
Non-epistemic logics of coalition power were developed by Pauly [25], who also
proved the completeness of the basic logic of coalition power. His approach has
been widely studied in the literature [26, 27, 28, 29, 30, 31, 32, 33]. More and
Naumov proposed a logical system for coalition power based on a binary modal-
ity [34]. Alechina, Logan, Nga, and Rakib proposed a version of coalition logic
with bounded resources [35]. Cao and Naumov developed a logic of strategic
power with bounded cost and profit [36]. Alur, Henzinger, and Kupferman intro-
duced Alternating-Time Temporal Logic (ATL) that combines temporal and coali-
tion modalities [37]. Goranko and van Drimmelen gave a complete axiomatization
of ATL [38]. Van der Hoek and Wooldridge proposed to combine ATL with epis-
temic modality to form Alternating-Time Temporal Epistemic Logic [39]. Aminof
et al. studied model-checking problems of an extension of ATLwith epistemic and
“prompt eventually" modal operators [40]. Jamroga, Malvone, and Murano pro-
posed a framework of natural strategies that can be used to express complexity of
strategies [41, 42]. An alternative approach to expressing the power to achieve
a goal in a temporal setting is the STIT logic [43, 44, 45, 46, 47]. Broersen,
Herzig, and Troquard have shown that coalition logic can be embedded into a
variation of STIT logic [48]. Strategy Logic introduces explicit quantifiers over
strategies [49, 50, 51, 52, 53].

Since in the current work we assume that the agent might not be able to distin-
guish some of the states of the world, our setting is one with imperfect information.
Strategies in such settings has been studied before under different names. Jamroga
and Ågotnes talk about “knowledge to identify and execute a strategy” [54], Jam-
roga and van der Hoek discuss the “difference between an agent knowing that he

8

has a suitable strategy and knowing the strategy itself [55]. Van Benthem calls
such strategies “uniform” [56]. Naumov and Tao use the term “executable strat-
egy” [57]. Recently, several modal logics that describe interplay between such
strategies and knowledge have been proposed for no recall [58, 59, 60, 57, 61, 62]
and perfect recall [63] settings.

Our system is closely related to Yanjing Wang’s Logic of Knowing How [64,
65] that describes properties of navigation by a single agent using a linear plan.
Such a plan is a linear sequence of instructions to be executed in a given order.
Navigation strategies based on linear plans are different from the uniform/know-
how strategies that we consider in this article. However, we believe that navigation
by linear strategies with bounded length is likely to yield a logical system similar
to the one proposed in this article. Li and Wang extended the linear planning
approach to navigability with intermediate constraints [66].

Navigability is a special case of planning. Planning with imperfect information
has been studied before in various contexts [67]. De Giacomo, Murano, et al dis-
cuss the connection between such planning and two-player games [68]. They also
devised a general technique to reduce planning under partial observability to two-
player games with perfect information. Ferguson and Stentz suggest an algorithm
for navigation planning using “maps plagued with uncertainty” [69]. Mentioned
earlier work by Wang [65] develops a modal logic for linear plans. Unlike the
navigation strategies that we consider in the current article, a linear plan is a fixed
sequence of instructions to be executed without taking into account the agent’s
observations.

Navigability is also closely related to reachability of a post-condition by a pro-
gram. The classical example of a logical system for reasoning about such reacha-
bility is Hoare Logic [70] and a more recent one is Reachability Logic [71].

None of the works mentioned above develop complete logical systems for
strategies of finite state machines or for strategies with bounded-recall in general.
Ågotnes and Walther introduced Alternating-time Temporal Logic with Bounded
Memory and discussed its expressive power [72]. Unlike us, they do not use a
Mealy machine to model bounded recall. Instead, they define bounded recall as
the memory of the last n states of the system. They list some properties of ATL
with bounded recall, but do not prove completeness. Among the properties they
list, none are similar to our Composition axiom. Complexity and model checking
of ATL with bounded memory has been analyzed in [73, 74, 75]. In [75], bounded
recall is defined as remembering the last n states, similarly to [72]. In [73], the
bounded memory consists of several “cells” (similar to bits in our terminology).
The authors define the size of memory as the number of cells, not as the number

9

of states.
In [74], the bounded memory is represented by Mealy machines, just like in

the current article. The author shows that the model checking problem for ATL is
Δp2-complete and it is PSPACE-complete for an ATL extension called ATL∗. He
also shows that ATL and ATL∗ model-checking is undecidable for finite-memory
semantics in incomplete information games with at least three players. The model
checking algorithms from this work potentially might be adopted to model check-
ing of formulae in our language, but this would not imply the decidability and
axiomatization results in the current article.

Unlike the current article, none of the above works on the bounded recall pro-
pose a sound and complete logical system for reasoning about bounded recall
strategies or prove decidability of such a system.

1.5. Outline
In this article we propose a complete logical system for the bounded naviga-

bility relation X ⊳n Y . The article is structured as follows. In the next section, we
formally define worlds and Mealy machines. In Section 3 we give an counterex-
ample for statement (1). The formal syntax and semantics of our logical system
are defined in Section 4. In Section 5 we introduce and discuss the axioms of our
system. In Section 6 we give examples of formal proofs in our system. Then, in
Section 7 we prove the soundness of these axioms. Next, in Section 8 we prove
the completeness of the system. Section 9 sketches the proof of the decidability of
our logical system. Section 10 concludes.

2. Worlds and Mealy Machines

Although in the introduction we have talked aboutX⊳nY as a relation between
sets of indistinguishability classes X and Y , in the formal account, we assume X
and Y to be sets of names of indistinguishability classes. We make this change
so that the logical system could be used to reason about any world, as long as its
indistinguishability classes are named using some fixed set of names. For the rest
of the article we fix a finite set of namesN .

Next we formally define a world. All actions in the world from Inoue and Mat-
suzawa’s experiment, see Figure 3, are deterministic. In general we allow actions,
specified via relation Δ below, to have several possible outcomes. We require that
each action has at least one outcome. Although the set of actionsA in the definition
below represents possible actions of a single agent, we allow for a possibility of

10

other agents being present and acting in the system. The nondeterministic nature
of the agent actions reflects possible actions of the other agents or the environment.

Definition 1. A world is a tuple (R,∼, ∗, A,Δ) where

1. R is a non-empty set of “states”,
2. ∼ is an indistinguishability equivalence relation on R,
3. ∗ is an “enumeration” function from set of namesN to set R∕∼,
4. A is a nonempty set of “actions”,
5. Δ ⊆ R×A×R is a “transition” relation such that for each state r ∈ R and

each action a ∈ A there is at least one r′ ∈ R where (r, a, r′) ∈ Δ.

For example, in the world partially depicted in Figure 3, the set R consists of
10! + 1 states. The states are represented by the vertical bars in the diagram. Only
21 of them are shown in the figure. The equivalence relation ∼ is captured by the
dashed lines between the states. The set of actionsA is {a, b, c, d, e, f , g, ℎ, i}. The
transition relationΔ is depicted by the direct edges between states labeled with the
actions.

Recall that set N is already assumed to be finite. We say that a world is finite
if sets R and A are finite.

Note that we do not assume that enumeration function ∗ is onto. That is, not
all classes of states must have names. For every set X ⊆ N , let X∗ be the image
of set X with respect to the function ∗.

Definition 2. A Mealy machine for a world (R,∼, ∗, A,Δ) is a tuple (Q, s, �, �)
where

1. Q is an arbitrary finite set of states,
2. s ∈ Q is a starting state,
3. � ∶ (R∕∼) ×Q→ A is an “action function”,
4. � ∶ (R∕∼) ×Q→ Q is a “transition function”.

For the Mealy machine depicted in Figure 4, the set Q includes state q and the
9! working states. The starting state q is labeled with an arrow pointing towards
it. The action functions and transition functions are represented by the labeled
directed edges between states.

Definition 3. The size of a Mealy machine is the number of its states.

11

In Figure 2 and in Figure 4, the sizes of Mealy machines are 1 and 9! + 1 respec-
tively. By Definition 2, the size of any Mealy machine is positive, because the
machine must have a starting state.

In the definition below by [r] we mean the equivalence class of state r ∈ R
with respect to the equivalence relation ∼.

Definition 4. A path of a Mealy machine (Q, s, �, �) in a world (R,∼, ∗, A,Δ) is
such an infinite sequence r0, q0, a0, r1, q1, a1, r2,… , that

1. r0, r1, r2,… are states from set R,
2. q0, q1, q2… are states from set Q,
3. a0, a1, a2,… are actions from set A,
4. q0 = s,
5. ak = �([rk], qk), for k ≥ 0,
6. (rk, ak, rk+1) ∈ Δ, for k ≥ 0,
7. qk+1 = �([rk], qk), for k ≥ 0.

Figure 1 partially depicts a path of a Mealy machine from Figure 4 in the world
of Figure 3. Namely, Figure 1 shows the states of the world the machine passes
and the actions that it takes, but it does not show the states of the machine itself.
Initially, the machine starts in state q, see Figure 4, from which the machine tran-
sitions into the top-most state and remains there for the rest of the path. By the
above definition, the path is an infinite sequence. In our example, once the path
reaches the right-most state in Figure 1 it loops in this state using action e.

Definition 5. For any world and an arbitrary set of namesX ⊆ N , let Patℎm(X)
be the set of all paths r0, q0, a0, r1,… of a Mealy machine m such that [r0] ∈ X∗.

Definition 6. For any world and an arbitrary set of names Y ⊆ N , let Visitm(Y)
be the set of all paths r0, q0, a0, r1,… of a Mealy machine m such that [ri] ∈ Y ∗
for at least one integer i ≥ 0.

In other words, Patℎm(X) and Visitm(Y) are the sets of all paths of machinem that
originate in X∗ and pass through Y ∗ respectively.

3. Limits of Bounded-Recall Navigability

As has been stated in Section 1.3, one of the key contributions of this article
is the Composition axiom for navigability with bounded-recall. This axiom states

12

that if there is aMealy machine of size n that can navigate from setX to set Y and a
Mealymachine of size k that can navigate from set Y to setZ, then there is aMealy
machine of size n+k that can navigate from setX to setZ. We formally state this
axiom in Section 5 and prove its soundness in Section 7. The next theorem shows
that, in general, the n + k bound cannot be improved.

Theorem 1. If the set of nameN contains at least three names x, y, and z, then for
any positive integers n and k, there is a world (R,∼, ∗, A,Δ), and Mealy machines
m1 and m2 of sizes n and k, respectively, such that

1. Patℎm1({x}) ⊆ Visitm1({y}),
2. Patℎm2({y}) ⊆ Visitm2({z}),
3. Patℎm({x}) ⊈ Visitm({z}) for each Mealy machinem of size less than n+k.

Proof. Consider the “wormhole” world (R,∼, ∗, A,Δ) partially depicted in Fig-
ure 5. It consists of n + k + 4 states: x, w1, . . . , wn, y, wn+1, . . . , wn+k, z, and ⦿.
We refer to state ⦿, which is not shown on the diagram, as the “black hole” state.
States w1,… , wn, wn+1,… , wn+k are indistinguishable. This is shown in the dia-
gram by dashed lines. The set of actionsA in this world is the set {0,… , n+k}. As
shown in the diagram, action 0 transitions the world from state x to state w1 (and
from state y to state wn+1), action 1 from state w1 to state w2, etc. Furthermore,
we assume that the execution of any action not shown in the diagram transitions
the system into the black hole state ⦿. In particular, any action executed in state
z transitions the world into ⦿. Let (x)∗ = [x] = {x}, (y)∗ = [y] = {y}, and
(z)∗ = [z] = {z}.

0

x y zw1 w2 wnwn-1 wn+1 wn+2 wn+kwn+k-1

1 n-1 n 0 n+1 n+k-1 n+k2 n+2
… …

Figure 5: “Wormhole” world (R,∼, ∗, A,Δ).

Figures 6 and 7 depictMealymachinesm1 andm2 respectively. Machinem1 can
navigate from state x to state y and machine m2 can navigate from state y to state
z. In other words, Patℎm1({x}) ⊆ Visitm1({y}) and Patℎm2({y}) ⊆ Visitm2({z}).

13

. . .

[w1] / 1 [w1] / 2 [w1] / 3 [w1] / n-1
[w1] / n

[x],[y],[z] / 0

q1 q2 q3 qn

[x],[y],[z] / 0 [x],[y],[z] / 0 [x],[y],[z] / 0

Figure 6: Mealy machine m1.

. . .

[w1] / n+1 [w1] / n+2 [w1] / n+3 [w1] / n+k-1
[w1] / n+k

[x],[y],[z] / 0

q1 q2 q3 qk

[x],[y],[z] / 0 [x],[y],[z] / 0 [x],[y],[z] / 0

Figure 7: Mealy machine m2.

To conclude the proof, we need to show that there is no Mealy machine m of
size less that n + k that can navigate from state x to state z. Suppose that such a
machine m = (Q, s, �, �) exists. Consider any path

� = x, q0, a0, w1, q1, a1, w2, q2, a2,… , wn, qn, an, y, q̂, 0, wn+1, qn+1, an+1,
wn+2, qn+2, an+2,… , wn+k, qn+k, an+k, z,⋯ ∈ Patℎm({x}).

Since machinem has less than n+k states, by the pigeonhole principle, at least two
of the states q1, q2,… , qn, qn+1,… , qn+k must be the same. Let qi = qj for some
i ≠ j. Hence, ai = �([wi], qi) = �([wj], qj) = aj by item 5 of Definition 4 and
because states wi and wj are indistinguishable. Note however, that by the design
of the world (R,∼, ∗, A,Δ), see Figure 5, in order for the path to pass through the
wormhole, the machine must use action i in statewi and action j in statewj . Since
ai = aj , machine m is using a wrong instruction in at least one of these two states
along path �. Therefore, � ∉ Visitm({z}). ⊠

4. Syntax and Semantics

In this section we formally define the syntax and semantics of our logical sys-
tem.

14

Definition 7. Let Φ be the minimal set of formulae such that

1. X ⊳n Y ∈ Φ for all nonempty sets X, Y ⊆ N and each integer n ≥ 1,
2. '→ ,¬' ∈ Φ for all formulae ', ∈ Φ.

In other words, language Φ is defined by the following grammar:

' ∶= ¬' | '→ ' | X ⊳n Y .

The next definition is one of the most important definitions of this section. It
formally specifies the meaning of the relation X ⊳n Y .

Definition 8. For any world M , let M ⊨ X ⊳n Y if Patℎm(X) ⊆ Visitm(Y) for
some Mealy machine m of size at most n.

For example, consider sets of states X and Y shown on Figure 3. Note that all
states in these sets are distinguishable, so each of them forms its own class. Let X
and Y be the set of names of classes {[r] | r ∈ X} and {[r] | r ∈ Y } respectively.
Then,M ⊨ X⊳9!+1Y because there is a Mealy machine of size 9!+1, namely the
machine from Figure 4, such that any path of this machine originating in a class
from set X∗ will eventually pass through a class from set Y∗.

5. Axioms

In this article we give a sound and complete axiomatization of the relation
X ⊳n Y . It consists of the following four axioms for all sets X, Y ,Z ⊆ N ,

1. Reflexivity: X ⊳n X,
2. Augmentation: X ⊳n Y → X ∪Z ⊳n Y ∪Z,
3. Composition: X ⊳n Y → (Y ⊳k Z → X ⊳n+k Z),
4. Monotonicity: X′ ⊳n Y → X ⊳n Y , if X ⊆ X′.

The Reflexivity axiom states that for any positive integer n and any setX ⊆ N
there is a Mealy machine of size at most n that can navigate from X to X. In fact,
any machine can do this because such navigation does not require any transition
at all. The Augmentation axiom says that if there is a Mealy machine that can
navigate from X to Y , then there is a Mealy machine of the same size that can
navigate from X ∪ Z to Y ∪ Z. Indeed, the same machine that can navigate
from X to Y can also navigate from X ∪ Z to Y ∪ Z: if the machine starts in
Z, then it is already in Z ⊆ Y ∪ Z; otherwise, it will eventually arrive to Y ⊆

15

Y ∪ Z. The Composition axiom states that a machine that can navigate from
X to Y and a machine that can navigate from Y to Z can be combined into a
machine that can navigate from X to Z. The size of the combined machine is the
sum of the sizes of the original machines. We prove the soundness of this axiom
in Lemma 6. The Reflexivity, the Augmentation, and the Composition axioms,
without the subscript, are known in the database theory [76, p. 81] as Armstrong’s
axioms [77]. The Monotonicity axiom states that if a Mealy machine can navigate
from set X′ to set Y , then a machine of the same size (in fact, the very same
machine) can navigate from any subset X ⊆ X′ to Y .

We write X ⊢ ' if formula ' is derivable from the propositional tautologies,
the above four axioms, and an additional set of hypotheses X using the Modus
Ponens inference rule. We gave similar axiomatizations for no recall and perfect
recall navigability in [23] and no recall navigability with intermediate constraints
in [24].

6. Examples of Derivations

In this section we give three examples of formal proofs in our logical system.
The Monotonicity axiom states that if the left argument of the relation ⊳n is re-
placed with a subset, then the relation remains true. Intuitively, the right argument
of this relation could be replaced with a superset, but such an axiom is missing
from our list. In our first example we show that this principle is derivable from the
rest of the axioms of our system.

Lemma 1. X ⊳n Y → X ⊳n Y ′, if Y ⊆ Y ′.

Proof. By the Augmentation axiom,

⊢ X ⊳n Y → (X ∪ (Y ′ ⧵ Y)) ⊳n (Y ∪ (Y ′ ⧵ Y)).

Hence, due to the assumption Y ⊆ Y ′,

⊢ X ⊳n Y → (X ∪ (Y ′ ⧵ Y)) ⊳n Y
′.

At the same time, by the Monotonicity axiom,

⊢ (X ∪ (Y ′ ⧵ Y)) ⊳n Y
′ → X ⊳n Y

′.

Therefore, ⊢ X ⊳n Y → X ⊳n Y ′ by the laws of propositional reasoning. ⊠

The next two results are used later in the proof of the completeness.

16

Lemma 2. ⊢ X ⊳n Y → X ⊳n′ Y , if n ≤ n′.

Proof. If n = n′, then X ⊳n Y → X ⊳n′ Y is a propositional tautology. Let us now
assume that n < n′. Thus, ⊢ Y ⊳n′−n Y by the Reflexivity axiom. At the same
time, by the Composition axiom,

⊢ X ⊳n Y → (Y ⊳n′−n Y → X ⊳n+(n′−n) Y).

Thus, by the laws of propositional reasoning,

⊢ X ⊳n Y → X ⊳n+(n′−n) Y .

Therefore, ⊢ X ⊳n Y → X ⊳n′ Y . ⊠

Lemma 3. ⊢ X1 ⊳n1 Y1 → (X2 ⊳n2 Y2 → X1 ∪X2 ⊳n1+n2 Y1 ∪ Y2).

Proof. By the Augmentation axiom, both

⊢ X1 ⊳n1 Y1 → X1 ∪X2 ⊳n1 Y1 ∪X2, (2)
⊢ X2 ⊳n2 Y2 → Y1 ∪X2 ⊳n2 Y1 ∪ Y2. (3)

At the same time, by the Composition axiom,

⊢ X1 ∪X2 ⊳n1 Y1 ∪X2 (4)
→ (Y1 ∪X2 ⊳n2 Y1 ∪ Y2 → X1 ∪X2 ⊳n1+n2 Y1 ∪ Y2).

Statements (2), (3), and (4) imply

⊢ X1 ⊳n1 Y1 → (X2 ⊳n2 Y2 → X1 ∪X2 ⊳n1+n2 Y1 ∪ Y2)

by the laws of propositional reasoning. ⊠

7. Soundness

Theorem 2 (soundness). If ⊢ ', thenM ⊨ ' for any worldM .

We prove the soundness of each of the four axioms of our system as four separate
lemmas.

17

Lemma 4 (Reflexivity). M ⊨ X ⊳n X, for any set X ⊆ N , any integer n ≥ 1,
and any worldM .

Proof. By Definition 1, set A contains at least one action a0. Let [r1], [r2],… , [rn]
be the equivalence classes of states of world M . Consider the following single-
state Mealy machine m that uses action a0 in all states of the world:

q1 . . .

[r1] / a0

[r2] / a0

[rn] / a0

By Definition 8, it suffices to show that Patℎm(X) ⊆ Visitm(X). Indeed, consider
a path � = r′0, q0, a0, r

′
1,⋯ ∈ Patℎm(X). Note that [r′0] ∈ X∗ by Definition 5.

Hence, � ∈ Visitm(X) by Definition 6. ⊠

Lemma 5 (Augmentation). IfM ⊨ X ⊳n Y , thenM ⊨ X ∪Z ⊳n Y ∪Z, for all
sets X, Y ,Z ⊆ N , any integer n ≥ 1, and any worldM .

Proof. By Definition 8, it suffices to show that if Patℎm(X) ⊆ Visitm(Y), then

Patℎm(X ∪Z) ⊆ Visitm(Y ∪Z).

Consider a path � = r0, q0, a0, r1,⋯ ∈ Patℎm(X ∪ Z). If r0 ∈ Z, then � ∈
Visitm(Z) ⊆ Visitm(Y ∪Z) by Definition 6.

Suppose r0 ∉ Z. Thus, the assumption � ∈ Patℎm(X ∪ Z) implies that � ∈
Patℎm(X). Hence, � ∈ Visitm(Y) due to the assumption Patℎm(X) ⊆ Visitm(Y).
Therefore, � ∈ Visitm(Y ∪Z) by Definition 6. ⊠

Lemma 6 (Composition). IfM ⊨ X⊳nY andM ⊨ Y ⊳kZ, thenM ⊨ X⊳n+kZ,
for all sets X, Y ,Z ⊆ N , all integers n, k ≥ 1, and any worldM .

Proof. By Definition 8, assumptions M ⊨ X ⊳n Y and M ⊨ Y ⊳k Z imply
that there are Mealy machines m1 and m2 of sizes at most n and k with initial
states q1 and q2 respectively, such that Patℎm1(X) ⊆ Visitm1(Y) and Patℎm2(Y) ⊆

18

Visitm2(Z). By Definition 8, it suffices to construct a Mealy machine m with at
most n + k states such that Patℎm(X) ⊆ Visitm(Z). We construct machine m by
building a Mealy machine that simulates machine m1 (from its initial state q1) till
the moment it reaches a state in set Y ∗ for the first time, and then simulates machine
m2 (from its initial state q2) indefinitely. For any two givenMealy machinesm1 and
m2:

y1 / a1

y2 / a2

y1 /
b1

y2 / b2

*
*

* *

Mealy machine m could be constructed using steps 1 through 5 as following:

y1 / b1

y2 / a2

y1 /
b1

y2 / b2

*

*

*

*

1. choose a transition of Mealy machine m1 labeled by y∗∕a where y ∈ Y and
a ∈ A,

2. identify a transition of Mealy machine m2 from its initial state q2, labeled by
y∗∕b for the same y as above and for some action b ∈ A,

3. redirect the transition of machine m1, as identified in step 1, to lead to the
ending state of the transition of machine m2, as identified in step 2,

4. repeat steps 1 through 3 for each transition of machine m1 labeled by y∗∕a
where y ∈ Y and a ∈ A,

5. make state q1 to be the initial state of machine m.

Therefore,M ⊨ X ⊳n+k Z. ⊠

Lemma 7 (Monotonicity). IfM ⊨ X′ ⊳n Y and X ⊆ X′, thenM ⊨ X ⊳n Y , for
all sets X,X′, Y ⊆ N , any integer n ≥ 1, and any worldM .

19

Proof. ByDefinition 8, assumptionM ⊨ X′⊳nY implies that there is aMealy ma-
chine m of size at most n such that Patℎm(X′) ⊆ Visitm(Y). At the same time, by
Definition 5, assumption X ⊆ X′ implies that Patℎm(X) ⊆ Patℎm(X′). Thus,
Patℎm(X) ⊆ Patℎm(X′) ⊆ Visitm(Y). Therefore, M ⊨ X ⊳n Y by Defini-
tion 8. ⊠

8. Completeness

In this section we prove the strong completeness of our logical system. This
proof is a non-trivial generalization of the proof of Theorem 1. While the proof of
that theorem constructed a counterexample for formula

{x} ⊳n {y}→ ({y} ⊳k {z}→ {x} ⊳n+k−1 {z}),

in this section we construct a counterexample for an arbitrary formula not provable
in our logical system.

We start the proof by fixing an arbitrary subset Φ0 of the set of all formulae
Φ and a maximal consistent subset Ω of set Φ0. Later, in the proof of the strong
completeness we will choose Φ0 to be the whole set Φ and in the proof of the
completeness with respect to finite models we will chooseΦ0 to be a specific finite
subset ofΦ. In the proof of Theorem 1 a rough equivalent of setΩ is the singleton
set of formulae {{x} ⊳n {y}→ ({y} ⊳k {z}→ {x} ⊳n+k−1 {z})}.

Next, we define the canonical worldM(Φ0,Ω) = (R,∼, ∗, A,Δ).

8.1. Canonical World
Theworld on Figure 5 can be viewed as consisting of three types of states: main

states x, y, and z, a “black hole” state (not shown on the figure), and auxiliary states
w1,… , wn, wn+1,… , wn+k that form two wormholes. Informally, the world in the
canonical model also consists of the same three types of states: a distinct “main”
state for each element of setN , a “black hole” state⦿ that has no way out, and a set
of auxiliary states whose sequences form passages (“wormholes”) between states
of the first type. If set Ω contains a formula X ⊳n Y , then the canonical world has
a wormhole (see Figure 8) of size n that can be used to transition from each main
state in setX ⊆ N into eachmain state in set Y ⊆ N . By size |W | of a wormhole
W we mean the number of auxiliary states in this wormhole. The wormholes that
we introduce here generalize the wormholes from Section 3. Namely, Figure 5
depicts wormholes between single states: one wormhole between states x and y

20

w1 w2

. . .
X

wn

. . .
Y

. . .

a0 a0 a0 an

a1 a2 an-1

anan

Figure 8: WormholeW consists of the auxiliary states w1,… , wn. In this diagram, ai stands for
ai(X, n, Y).

and another between states y and z. Here we consider wormholes between sets
of states X and Y . In the formal definition below, we choose distinct elements
wi(X, n, Y) for each X, Y ⊆ N and each integer i.

Definition 9. The set of statesR of the canonical worldM(Ω) is the disjoint union

N ∪ {⦿} ∪ {wi(X, n, Y) | X ⊳n Y ∈ Ω, 1 ≤ i ≤ n}.

Note that set R might be infinite. Just like in Figure 5, we assume that all states in
the world are distinguishable except for the auxiliary states that form wormholes.
Two auxiliary states are indistinguishable no matter if they come from the same or
different wormholes.

Definition 10. For any two states x, y ∈ R, let x ∼ y if either x = y or x, y ∉
N ∪ {⦿}.

Recall that, in general, setN is the set of names of indistinguishability classes.
In the case of the canonical model, set N also serves as the set of “main” states
in the world. Since each main state is distinguishable from the other states of the
world, any such state r forms its own indistinguishability class [r]. We connect
these two meanings of the elements of set N by defining the name r ∈ N to be
used as a name of class [r]:

Definition 11. ∗ (r) = [r] for each r ∈ N .

In Figure 5, to advance from state x to state z a machine needs to use different
actions in each state (even if the states are located in different wormholes) with
the exception of the same action 0 used to advance from state x to state w1 and

21

from state y to state wn+1. It is important for the proof of part 3 of Theorem 1 that
the machine has to use different actions in wormhole states. At the same time, we
have chosen to use the same action 0 for states x and y for the sake of simplicity. In
the case of the canonical world the construction is very similar except that we now
require all actions to be different without any exceptions. This change is important
because there can be multiple wormholes starting from the same “main” state of
the world and we need a way for the machine to specify which wormhole it wants
to enter.

Consider the wormhole of the world that corresponds to a formulaX⊳nY ∈ Ω.
The canonical world has a distinct action a0(X, n, Y) to get from X to the first
auxiliary state in the wormhole, a distinctive action ai(X, n, Y) to advance from
i-th state of the wormhole to the next one, and a distinctive action an(X, n, Y) that
leads out of the wormhole into a randomly selected state of set Y . These actions
are distinct not only for passages within the given wormhole, but they also differ
from one wormhole to another.

Definition 12. A = {ai(X, n, Y) | 0 ≤ i ≤ n,Ω ⊢ X ⊳n Y }.

Definition 13. For any wormhole W corresponding to a formula X ⊳n Y ∈ Ω,
actions ai(X, n, Y) advance the machine through the wormhole as specified above.
If this action is executed in a state which is not the i-th state of wormholeW , then
the system transitions into the black hole state ⦿. Any action executed in state ⦿
transitions the system back into the same state⦿.

This concludes the definition of the canonical worldM(Φ0,Ω).

Lemma 8. WorldM(Φ0,Ω) is finite for any finite set Φ0. ⊠

8.2. Properties of Wormholes
If wormholeW corresponds to formula X ⊳n Y ∈ Ω, then we refer to sets X

and Y as In(W) and Out(W) respectively.

Lemma 9. Ω ⊢ In(W) ⊳
|W |

Out(W).

Proof. Let wormholeW correspond to a formulaX⊳nY ∈ Ω. Thus, In(W) = X,
Out(W) = Y , and |W | = n. Therefore, Ω ⊢ In(W)⊳

|W |

Out(W) by the assump-
tion X ⊳n Y ∈ Ω. ⊠

22

Lemma 10. Sets In(W) and Out(W) are nonempty.

Proof. Let wormhole W correspond to formula X ⊳n Y ∈ Φ. Sets X and Y are
nonempty by Definition 7. Therefore, sets In(W) and Out(W) are nonempty. ⊠

As usual, the key step in the proof of the completeness is the “truth” or the in-
duction lemma that establishes the connection between the maximal consistent set
of formulae Ω and the canonical worldM(Φ0,Ω). In our case, this is Lemma 22.
Since languageΦ of our logical system consists of atomic propositionsX⊳nY and
Boolean connectives only, the hardest step in proving Lemma 22 is the base case.
We divided the base case into two separate statements: Lemma 11 and Lemma 21.

The proof of Lemma 11 is significantly simpler than the proof of Lemma 21
because we constructed the canonical world in such a way that if X ⊳n Y ∈ Ω,
then the world has a wormhole of size n from set X to set Y . Thus, the proof of
Lemma 11 comes down to constructing aMealymachine of size n that can navigate
through this wormhole. We call this machine “wormhole navigator”.

The proof of Lemma 11 also closely resembles the proof of parts 1 and 2 of
Lemma 1. The wormhole navigator, depicted in Figure 9, is a straightforward
modification of Mealy machines m1 and m2 from Figures 6 and 7 respectively.

Lemma 11. If X ⊳n Y ∈ Ω, thenM(Φ0,Ω) ⊨ X ⊳n Y .

Proof. Suppose that X ⊳n Y ∈ Ω. By Definition 8, it suffices to show that there
is a Mealy machine m with n states such that Patℎm(X) ⊆ Visit(Y). Let m be
the Mealy machine depicted in Figure 9, where N− is the set N∗ ⧵ {[w1]}, ai =

q1 q2 qn. . .

N- / a0

q3

[w1] / a1 [w1] / a2 [w1] / a3 [w1] / an-1 [w1] / an

N- / a0 N- / a0 N- / a0

Figure 9: Wormhole Navigator m.

ai(X, n, Y) for each i such that 0 ≤ i ≤ n, and w1 = w1(X, n, Y) (recall that
[w1] = [wi(X, n, Y)] for each i such that 2 ≤ i ≤ n). In other words, machine m
has states q1,… , qn, where q1 is the starting state. If the machine is outside of the

23

“wormhole” corresponding to the formula X ⊳n Y , it applies the “default” action
a0 and remains in the same state. If the machine is in the “wormhole”, then in state
qi it applies action ai and transitions into state qi+1, unless i = n, in which case it
still applies action ai but remains in state qi.

By the definition of the world M(Φ0,Ω) and the choice of Mealy machine
m, any path in set Patℎm(X) has the form: x, q1, a0, w1, q1, a1, w2, q2, a2,… , an−1,
wn, qn, an, y, qn,… where x ∈ X∗, y ∈ Y ∗. Thus, Patℎm(X) ⊆ Visitm(Y). ⊠

8.3. Outline of the Proof of Lemma 21
Statement of Lemma 21 resembles part 3 of Theorem 1. However, the proof

of Lemma 21 is significantly more complicated than the proof of Theorem 1. In
fact, the proof of this lemma occupies most of the remaining part of this article.
The complexity of the proof rises from the fact that worldM(Φ0,Ω) has a much
larger size and a much more complicated structure than the linear world consisting
of just two wormholes depicted in Figure 5.

Just like in the case of part 3 of Theorem 1, the proof of Lemma 21 is based
on the pigeonhole principle. Note that in the proof of Theorem 1 we applied this
principle to the set of all wormhole states in Figure 5. However, this would not
be useful in our case because a Mealy machine does not have to pass through all
states in the canonical worldM(Φ0,Ω) in order to navigate from set X to set Y .
Instead, in this proof we use the pigeonhole principle in Lemma 12 to put the limit
on the total size of all wormholes that are passable (can be navigated through) by
a given Mealy machine.

Next, we define a chain of sets of states Y0 ⊆ Y1 ⊆ Y2 ⊆ … for a given set Y
and a given Mealy machine. Informally, set Yi consists of all states of the world
from which the Mealy machine is guaranteed to navigate to set Y using at most i
passable wormholes. Note that if the Mealy machine can navigate from set X to
set Y , then it must be true that X ⊆

⋃

i Yi.
The introduction of the chain Y0 ⊆ Y1 ⊆ Y2 ⊆… allows us to use induction to

combine the statements of Lemma 9 for each individual passable wormhole into
the claim thatΩ ⊢

⋃

i Yi⊳nY . Therefore,Ω ⊢ X⊳nY by theMonotonicity axiom,
just like Lemma 21 states.

The detailed proof of Lemma 21 is given in the next two sections. The first of
them introduces passable wormholes and the chain Y0 ⊆ Y1 ⊆ Y2 ⊆… for an arbi-
trary Mealy machine and an arbitrary set Y of states in the canonical world. It also
proves key facts about these notions. The proof of Lemma 21 and the remainder
of the proof of the completeness is given in Section 8.5.

24

8.4. Passable Wormholes and Sets Yi
In this section we fix a nonempty set Y of states in a canonical worldM(Φ0,Ω)

and a Mealy machine m of size at most n. We define passable wormholes, the rank
of a passable wormhole, and prove their basic properties.

Definition 14. WormholeW = (w1,… , wk) is “passable” if there is a state q of
Mealy machinem such thatm, starting in machine state q, can navigate from world
state w1 into the set of world states Out(W). The set of all passable wormholes is
denoted by P .

For any set of wormholes X, let ‖X‖ =
∑

W ∈X |W |.

Lemma 12. ‖P‖ ≤ n.

Proof. By Definition 13, to navigate through a wormhole W from a state in
set In(W) to a state in set Out(W), machine m must pass through all states in
the wormholes and leave each state of the wormhole using a state-specific action
ai(In(W), n, Out(W)). By Definition 4, the action of a machine is determined (via
function �) by the state of the machine and the state of the world the machine is
in. By Definition 10, the states in all wormholes are indistinguishable. Thus, the
action in a wormhole state is determined only by the state of the machine. Hence,
by the pigeonhole principle, the total number of states in all passable wormholes
cannot be more than the number of states of machine m. Therefore, ‖P‖ ≤ n. ⊠

. . .

. . .

. . .
Y0Y1Y3 Y2Y∞

W3

In(W2) Out(W2)

W1

W2

W4

Figure 10: Sets Y = Y0 ⊆ Y1 ⊆ Y2 ⊆… Y∞ and function rank(W). WormholesW1,W2,W3, and
W4 have rank 1, 2, 3, and 4 respectively.

We now define the chain of sets of states Y0 ⊆ Y1 ⊆ Y2 ⊆ … , see Figure 10.
Informally, set Yi consists of all wormholesW such that set Y0 is reachable from
In(W) through at most i wormholes.

25

Definition 15. For any i ≥ 0, let

Yi =
⋃

{

In(W)
|

|

|

|

|

|

W ∈ P ,Out(W) ⊆
⋃

j<i
Yj

}

∪ Y .

Lemma 13. Y0 = Y .

Proof. The statement of the lemma follows fromDefinition 15 because by Lemma 10
set Out(W) is not empty for each wormholeW . ⊠

Definition 16. Y∞ =
⋃

i≥0 Yi.

We define the rank of an arbitrary passable wormholeW , see Figure 10, to be
the smallest r ≥ 1 such that set Out(W) is a subset of Y0 ∪ Y1 ∪⋯ ∪ Yr−1. If such
an integer r does not exist, then the rank is not defined.

Definition 17. For any passable wormholeW ,

rank(W) = min
{

r ≥ 1 |
|

Out(W) ⊆ Yr−1
}

.

Definition 18. For any integer r ≥ 1, set Pr is the set of all passable wormholes
of rank r.

Lemma 14. Yi = Yi−1 ∪
(

⋃

W ∈Pi
In(W)

)

for each i ≥ 1.

Proof. The statement of the lemma follows from Definition 15, Definition 17, and
Definition 18. ⊠

Lemma 15. There is an integer k ≥ 0 such that Yk = Y∞.

Proof. By Definition 15, sets Y0, Y1,⋯ ⊆ N form an increasing chain Y0 ⊆ Y1 ⊆
Y2 ⊆… . Note that setN is finite by the assumption in the Section 4. Thus, there
is an integer k ≥ 0 such that Yk = Yk+1 = Yk+2 = … . Therefore, Y∞ = Yk. ⊠

Let l ≥ 0 be the minimal integer such that Yl = Y∞. Such an integer exists by
Lemma 15.

26

Lemma 16. ‖Pi‖ > 0 for each i such that 1 ≤ i ≤ l.

Proof. Suppose that ‖Pi‖ = 0 for some i such that 1 ≤ i ≤ l. Note that, by Def-
inition 9, the length of each wormhole is at least 1. Thus, set Pi is empty. Then,
Yi = Yi−1 by Lemma 14. Hence, Yi−1 = Yi = Yi+1 = ... by Definition 15. Thus,
Y∞ = Yi−1. At the same time i − 1 < i ≤ l, which contradicts the choice of l as
the minimal integer such that Yl = Y∞. ⊠

We are now ready to prove thatΩ ⊢
⋃

i Yi⊳nY . As we discussed in Section 8.3,
this is a core fact in the proof of Lemma 21. We show this fact by induction. The
next lemma is an auxiliary lemma for the induction. Lemma 18 carries out the
induction itself. Lemma 19 rephrases the result of Lemma 18 into the required
form.

Lemma 17. Ω ⊢ Yi ⊳‖Pi‖ Yi−1 for each i such that 1 ≤ i ≤ l.

Proof. Lemma 16 implies that Pi = {W1,W2,… ,Wk} for some k ≥ 1. Then
Ω ⊢ In(Wj) ⊳|Wj |

Out(Wj) by Lemma 9, for each j ≤ k. Thus, by Lemma 3
applied k − 1 times,

Ω ⊢
⋃

j≤k
In(Wj) ⊳|W1|+|W2|+⋯+|Wk|

⋃

j≤k
Out(Wj).

Hence, by the choice ofW1,W2,… ,Wk,

Ω ⊢
⋃

j≤k
In(Wj) ⊳‖Pi‖

⋃

j≤k
Out(Wj).

Then, by the Augmentation axiom,

Ω ⊢ Yi−1 ∪

(

⋃

j≤k
In(Wj)

)

⊳
‖Pi‖ Yi−1 ∪

(

⋃

j≤k
Out(Wj)

)

.

Thus, by Lemma 14,

Ω ⊢ Yi ⊳‖Pi‖ Yi−1 ∪

(

⋃

j≤k
Out(Wj)

)

.

At the same time,Out(W) ⊆ Yi−1 for each wormholeW ∈ Pi by Definition 17.
Therefore,Ω ⊢ Yi⊳‖Pi‖Yi−1 by the choice of wormholesW1,W2,… ,Wk ∈ Pi. ⊠

27

Lemma 18. Ω ⊢ Yi ⊳‖P1‖+⋯+‖Pi‖ Y for each integer i such that 1 ≤ i ≤ l.

Proof. We prove this statement by induction on integer i. Suppose that i = 1.
Thus, Ω ⊢ Yi ⊳‖Pi‖ Y0 by Lemma 17. Therefore, Ω ⊢ Yi ⊳‖Pi‖ Y by Lemma 13.

By the induction hypothesis, Ω ⊢ Yi−1 ⊳‖P1‖+⋯+‖Pi−1‖ Y . At the same time
Ω ⊢ Yi ⊳‖Pi‖ Yi−1 by Lemma 17. Therefore, Ω ⊢ Yi ⊳‖P1‖+⋯+‖Pi‖ Y , by the Com-
position axiom. ⊠

Lemma 19. Ω ⊢ Y∞ ⊳n Y .

Proof. If l = 0, then Y∞ = Yl = Y0 = Y by Lemma 13 and the choice of l. Thus,
Ω ⊢ Y∞ ⊳n Y by the Reflexivity axiom.

Suppose now that l > 0. By Lemma 12 and because sets P1,… , Pl are dis-
joint, ‖P1‖ +⋯ + ‖Pl‖ ≤ ‖P‖ ≤ n. Therefore, Ω ⊢ Y∞ ⊳n Y by Lemma 18 and
Lemma 2. ⊠

Informally, the next lemma states there is no way to enter set Y∞ from outside
of this set using a passable wormhole.

Lemma 20. If Out(W) ⊆ Y∞, then In(W) ⊆ Y∞, for any passable wormholeW .

Proof. Recall that Y∞ = Yl by the choice of integer l. Hence, Out(W) ⊆ Yl.
Thus, rank(W) ≤ l by Definition 17. Then, In(W) ⊆ Yl+1 by Lemma 14. There-
fore, In(W) ⊆ Y∞ by Definition 16. ⊠

8.5. Completeness: Final Steps
Recall that the previous section was the preparation for the proof of the follow-

ing lemma. This lemma can be viewed as a very general form of the contrapositive
of part 3 of Theorem 1. We use this lemma as one part of the base case in the in-
duction proof of Lemma 22.

Lemma 21. If X ⊳n Y ∈ Φ0 andM(Φ0,Ω) ⊨ X ⊳n Y , then X ⊳n Y ∈ Ω.

Proof. By Definition 8, the assumptionM(Φ0,Ω) ⊨ X ⊳n Y implies that there is
a Mealy machine m of size at most n such that Patℎm(X) ⊆ Visitm(Y). Let sets
{Yi}i, Y∞, P , and {Pi}i be defined for set Y and Mealy machine m as specified in
Section 8.4. We consider the following two cases separately:

28

Case I: X ⊆ Y∞. Thus, Ω ⊢ X ⊳n Y by Lemma 19 and the Monotonicity axiom.
Recall thatX⊳n Y ∈ Φ0 by the assumption of the lemma. Therefore,X⊳n Y ∈ Ω
because Ω is a maximal consistent subset of Φ0.
Case II: X ⊈ Y∞. Consider any x0 ∈ X ⧵ Y∞. If Mealy machine m starts in state
x0 and in the initial state q1 of the machine, then, by Definition 13, only one of the
following three cases take place, see Figure 11:

. . .
x0

. . .

. . .

. . .

Case A Case B

Case C

x1 x2

Y

W1 W2 W3

In(W1) In(W2) In(W3)

Out(W1) Out(W2)

Figure 11: Towards proof of Lemma 21.

Case A: machine m transitions from state x0 and initial state q1 into black hole
state ⦿. By line 5 of Definition 1, the machine will be able to continue making
transitions indefinitely. However, by Definition 13, the machine will never leave
state ⦿ ∉ Y . Thus, Patℎm(X) ⊈ Visitm(Y), because the states of the worm-
holes are not in set N and thus these states do not belong to set Y . Statement
Patℎm(X) ⊈ Visitm(Y) contradicts the choice of machine m.
Case B:machinem transitions from state x0 and initial state q1 into awormholeW1,
but exits the wormhole before reaching setOut(W1). In this case, by Definition 13,
machinemmust exit the wormhole into black hole state⦿. Just like in case A, this
means that Patℎm(X) ⊈ Visitm(Y), which again contradicts the choice of machine
m.
Case C: machine m transitions from state x0 and initial state q1 into a wormhole
W1, navigates through the wormhole, and exits it into set Out(W1). Lemma 20
implies that Out(W1) ⊈ Y∞ because x0 ∈ In(W1) ⧵ Y∞. Consider any state x1 ∈

29

Out(W1)⧵Y∞. Thus, wormholeW is passable. By Definition 13, machinemmight
exit from wormhole W1 into state x1. Repeat the steps above ad infinitum to ei-
ther (a) construct a path that goes through finitely many states x0, x1,… , xm ∉ Y∞
and finitely many wormholesW1,W2,… ,Wm and then reaches black hole state⦿
to remain there forever, or (b) construct a path that goes through infinitely many
states x0, x1,… ,∉ Y∞ and infinitely many wormholesW1,W2,… never reaching
set Y0. In either case, Patℎm(X) ⊈ Visitm(Y). ⊠

Lemma 22. M(Φ0,Ω) ⊨ ' iff ' ∈ Ω, when set Φ0 is closed with respect to
subformulae and ' ∈ Φ0.

Proof. We prove the statement of the lemma by structural induction on the com-
plexity of formula '. The base case follows from Lemma 11 and Lemma 21. The
induction step follows from Definition 8, the maximality, and the consistency of
set Ω in the standard way. ⊠

Next, we state and prove a strong completeness theorem for our logical system.

Theorem 3. IfX ⊬ ', then there is a worldM such thatM ⊨ � for each � ∈ X
andM ⊭ '.

Proof. Suppose ⊬ '. Thus, set X ∪ {¬'} is consistent. By Lindenbaum’s lemma
for propositional logic [78, Proposition 2.14], this set has a maximal consistent
extension Ω ⊆ Φ. Then, ' ∉ Ω due to the consistency of set Ω. Let Φ0 = Φ.
Therefore,M(Φ0,Ω) ⊨ � for each � ∈ X andM(Φ0,Ω) ⊭ ' by Lemma 22. ⊠

9. Finite Completeness and Decidability

Recall that a world (R,∼, ∗, A,Δ) is finite if sets R and A are finite. In this
section we prove (weak) completeness of our logical system with respect to finite
worlds and decidability of the set of all theorems of our system.

Theorem 4. If ⊬ ', then there is a finite worldM such thatM ⊭ '.

Proof. Suppose that ⊬ '. Let Φ0 be the finite set of all subformulae of formula
¬' and set Ω be a maximal consistent subset for Φ0 such that ¬' ∈ Ω. Then,
' ∉ Ω because set Ω is consistent. Thus, M(Φ0,Ω) ⊭ ' by Lemma 22. World
M(Φ0,Ω) is finite by Lemma 8. ⊠

30

Theorem 5. Set {' ∈ Φ | ⊢ '} is decidable.

Proof. This set is recursively enumerable because it is axiomatizable. The com-
plement of the set is recursively enumerable by Theorem 4. Therefore, the set is
decidable. ⊠

10. Conclusion

The contribution of this article is three-fold. First, we observe that if one needs
m1 bits of memory to navigate from X to Y and m2 bits of memory to navigate
from Y to Z, then one can navigate from X to Z using ⌈log2(2m1 + 2m2)⌉ bits of
memory. Second, we show that this result cannot be improved. Third, we describe
all properties of bounded-recall plans. We do this by giving a sound and complete
logical system that captures all properties of the navigability relation. This work is
a non-trivial extension of our previous papers [23] and [24], where we considered
no recall and perfect recall strategies.

In the future, we plan to study the properties of bounded-recall navigability in
multi-agent settings. One can consider coalitions of agents in which each agent
has a limited working memory, but perhaps it is even more interesting to study the
properties of coalitions with bounded shared memory.

References

[1] S. Inoue, T. Matsuzawa, Working memory of numerals in chimpanzees, Cur-
rent Biology 17 (23) (2007) R1004–R1005.

[2] P. Carruthers, Evolution of working memory, Proceedings of the Na-
tional Academy of Sciences 110 (Supplement 2) (2013) 10371–10378.
doi:10.1073/pnas.1301195110.

[3] G. H. Mealy, A method for synthesizing sequential circuits, The Bell
System Technical Journal 34 (5) (1955) 1045–1079. doi:10.1002/j.1538-
7305.1955.tb03788.x.

[4] E. F. Moore, Gedanken-experiments on sequential machines, Automata stud-
ies 34 (1956) 129–153.

31

[5] K. Deuser, P. Naumov, Navigability with bounded recall (extended abstract),
in: Proceedings of the 16th International Conference on Principles of Knowl-
edge Representation and Reasoning, 2018.

[6] A. Neyman, Bounded complexity justifies cooperation in the finitely repeated
prisoners’ dilemma, Economics letters 19 (3) (1985) 227–229.

[7] A. Rubinstein, Finite automata play the repeated prisoner’s dilemma, Journal
of economic theory 39 (1) (1986) 83–96.

[8] C. H. Papadimitriou, M. Yannakakis, On complexity as bounded rationality,
in: Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, ACM, 1994, pp. 726–733.

[9] R. J. Aumann, Rationality and bounded rationality, Games and Economic
Behavior 21 (1-2) (1997) 2–14.

[10] Y. Shoham, K. Leyton-Brown, Multiagent systems: Algorithmic, game-
theoretic, and logical foundations, Cambridge University Press, 2008.

[11] K. G. Binmore, L. Samuelson, Evolutionary stability in repeated games
played by finite automata, Journal of economic theory 57 (2) (1992) 278–
305.

[12] A. Rao, A finite memory automaton for two-armed Bernoulli bandit prob-
lems., in: AAAI, 2017, pp. 4981–4982.

[13] M. Buckland, Programming Game AI by Example, Jones & Bartlett Learn-
ing, 2005.

[14] A. Marino, L. Parker, G. Antonelli, F. Caccavale, Behavioral control for
multi-robot perimeter patrol: A finite state automata approach, in: Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on, IEEE,
2009, pp. 831–836.

[15] M. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, Boundedmemory Dolev–
Yao adversaries in collaborative systems, Information and Computation 238
(2014) 233–261.

[16] S. Nikolaidis, D. Hsu, S. Srinivasa, Human-robot mutual adaptation in col-
laborative tasks: Models and experiments, The International Journal of
Robotics Research 36 (5-7) (2017) 618–634.

32

[17] L. Benini, G. De Micheli, Transformation and synthesis of FSMs for low-
power gated-clock implementation, in: Proceedings of the 1995 International
Symposium on Low Power Design, ISLPED ’95, ACM, New York, NY,
USA, 1995, pp. 21–26.

[18] M. Shahbaz, R. Groz, Inferring Mealy machines, in: A. Cavalcanti, D. R.
Dams (Eds.), FM 2009: Formal Methods, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 207–222.

[19] F. Aarts, J. Schmaltz, F. Vaandrager, Inference and abstraction of the biomet-
ric passport, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of
Formal Methods, Verification, and Validation, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010, pp. 673–686.

[20] F. Aarts, H. Kuppens, J. Tretmans, F. Vaandrager, S. Verwer, Improving
active Mealy machine learning for protocol conformance testing, Machine
learning 96 (1-2) (2014) 189–224.

[21] R. Bloem, K. Chatterjee, T. A. Henzinger, B. Jobstmann, Better quality in
synthesis through quantitative objectives, in: A. Bouajjani, O. Maler (Eds.),
Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 140–156.

[22] M. Herrmannsdoerfer, S. Benz, E. Juergens, Cope - automating coupled evo-
lution of metamodels and models, in: S. Drossopoulou (Ed.), ECOOP 2009 –
Object-Oriented Programming, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 52–76.

[23] K. Deuser, P. Naumov, Armstrong’s axioms and navigation strategies, in:
Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[24] K. Deuser, P. Naumov, Navigability with intermediate constraints, Journal of
Logic and Computation 28 (7) (2018) 1647–1670.

[25] M. Pauly, A modal logic for coalitional power in games, Journal of Logic and
Computation 12 (1) (2002) 149–166. doi:10.1093/logcom/12.1.149.

[26] V. Goranko, Coalition games and alternating temporal logics, in: Proceed-
ings of the 8th conference on Theoretical aspects of rationality and knowl-
edge, Morgan Kaufmann Publishers Inc., 2001, pp. 259–272.

33

[27] W. van der Hoek, M. Wooldridge, On the logic of cooperation and proposi-
tional control, Artificial Intelligence 164 (1) (2005) 81 – 119.

[28] S. Borgo, Coalitions in action logic, in: 20th International Joint Conference
on Artificial Intelligence, 2007, pp. 1822–1827.

[29] L. Sauro, J. Gerbrandy, W. van der Hoek, M. Wooldridge, Reason-
ing about action and cooperation, in: Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS ’06, ACM, New York, NY, USA, 2006, pp. 185–192.
doi:10.1145/1160633.1160663.

[30] T. Ågotnes, P. Balbiani, H. van Ditmarsch, P. Seban, Group an-
nouncement logic, Journal of Applied Logic 8 (1) (2010) 62 – 81.
doi:10.1016/j.jal.2008.12.002.

[31] T. Ågotnes, W. van der Hoek, M. Wooldridge, Reasoning about
coalitional games, Artificial Intelligence 173 (1) (2009) 45 – 79.
doi:10.1016/j.artint.2008.08.004.

[32] F. Belardinelli, Reasoning about knowledge and strategies: Epistemic strat-
egy logic, in: Proceedings 2nd International Workshop on Strategic Reason-
ing, SR 2014, Grenoble, France, April 5-6, 2014, Vol. 146 of EPTCS, 2014,
pp. 27–33.

[33] V. Goranko, W. Jamroga, P. Turrini, Strategic games and truly playable effec-
tivity functions, Autonomous Agents andMulti-Agent Systems 26 (2) (2013)
288–314. doi:10.1007/s10458-012-9192-y.

[34] S. M. More, P. Naumov, Calculus of cooperation and game-based reason-
ing about protocol privacy, ACM Trans. Comput. Logic 13 (3) (2012) 22:1–
22:21. doi:10.1145/2287718.2287722.

[35] N. Alechina, B. Logan, H. N. Nguyen, A. Rakib, Logic for coalitions with
bounded resources, Journal of Logic and Computation 21 (6) (2011) 907–
937.

[36] R. Cao, P. Naumov, Budget-constrained dynamics in multiagent systems, in:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, 2017,
pp. 915–921. doi:10.24963/ijcai.2017/127.

34

[37] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic,
Journal of the ACM 49 (5) (2002) 672–713. doi:10.1145/585265.585270.

[38] V. Goranko, G. van Drimmelen, Complete axiomatization and decidability
of alternating-time temporal logic, Theoretical Computer Science 353 (1)
(2006) 93 – 117. doi:10.1016/j.tcs.2005.07.043.

[39] W. van der Hoek, M. Wooldridge, Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications, Studia Logica
75 (1) (2003) 125–157. doi:10.1023/A:1026171312755.

[40] B. Aminof, A. Murano, S. Rubin, F. Zuleger, Prompt alternating-time epis-
temic logics, KR 16 (2016) 258–267.

[41] W. Jamroga, V. Malvone, A. Murano, Reasoning about natural strategic abil-
ity, in: Proceedings of the 16th Conference on Autonomous Agents andMul-
tiAgent Systems, International Foundation for Autonomous Agents andMul-
tiagent Systems, 2017, pp. 714–722.

[42] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability under imper-
fect information, in: Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, International Foundation for
Autonomous Agents and Multiagent Systems, 2019, pp. 962–970.

[43] N. Belnap, M. Perloff, Seeing to it that: A canonical form for agentives,
in: Knowledge representation and defeasible reasoning, Springer, 1990, pp.
167–190.

[44] J. F. Horty, Agency and deontic logic, Oxford University Press, 2001.

[45] J. F. Horty, N. Belnap, The deliberative STIT: A study of action, omission,
ability, and obligation, Journal of Philosophical Logic 24 (6) (1995) 583–
644.

[46] J. Horty, E. Pacuit, Action types in STIT semantics, The Review of Symbolic
Logic (2017) 1–21.

[47] G. K. Olkhovikov, H. Wansing, Inference as doxastic agency. part i: The
basics of justification STIT logic, Studia Logica (2018) 1–28.

35

[48] J. Broersen, A. Herzig, N. Troquard, A normal simulation of coalition logic
and an epistemic extension, in: Proceedings of the 11th conference on The-
oretical aspects of rationality and knowledge, ACM, 2007, pp. 92–101.

[49] K. Chatterjee, T. A. Henzinger, N. Piterman, Strategy logic, Information and
Computation 208 (6) (2010) 677–693.

[50] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strate-
gies: On the model-checking problem, ACMTransactions on Computational
Logic (TOCL) 15 (4) (2014) 34.

[51] R. Berthon, B. Maubert, A. Murano, S. Rubin, M. Y. Vardi, Strategy logic
with imperfect information, in: Logic in Computer Science (LICS), 2017
32nd Annual ACM/IEEE Symposium on, IEEE, 2017, pp. 1–12.

[52] B. Aminof, V. Malvone, A. Murano, S. Rubin, Graded strategy logic: Rea-
soning about uniqueness of Nash equilibria, in: Proceedings of the 2016 In-
ternational Conference on Autonomous Agents &Multiagent Systems, Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2016,
pp. 698–706.

[53] B. Aminof, V. Malvone, A. Murano, S. Rubin, Graded modalities in strategy
logic., Inf. Comput. 261 (Part) (2018) 634–649.

[54] W. Jamroga, T. Ågotnes, Constructive knowledge: what agents can achieve
under imperfect information, Journal of Applied Non-Classical Logics 17 (4)
(2007) 423–475. doi:10.3166/jancl.17.423-475.

[55] W. Jamroga, W. van der Hoek, Agents that know how to play, Fundamenta
Informaticae 63 (2-3) (2004) 185–219.

[56] J. van Benthem, Games in dynamic-epistemic logic, Bulletin of Economic
Research 53 (4) (2001) 219–248. doi:10.1111/1467-8586.00133.

[57] P. Naumov, J. Tao, Coalition power in epistemic transition systems, in: Pro-
ceedings of the 2017 International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2017, pp. 723–731.

[58] T. Ågotnes, N. Alechina, Epistemic coalition logic: completeness and com-
plexity, in: Proceedings of the 11th International Conference onAutonomous
Agents and Multiagent Systems-Volume 2 (AAMAS), 2012, pp. 1099–1106.

36

[59] T. Ågotnes, N. Alechina, Coalition logic with individual, distributed and
common knowledge, Journal of Logic and Computation 29 (2019) 1041–
1069. doi:10.1093/logcom/exv085.

[60] P. Naumov, J. Tao, Together we know how to achieve: An epistemic logic
of know-how, in: 16th conference on Theoretical Aspects of Rationality and
Knowledge (TARK), July 24-26, 2017, EPTCS 251, 2017, pp. 441–453.

[61] R. Fervari, A. Herzig, Y. Li, Y. Wang, Strategically knowing how, in: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI-17, 2017, pp. 1031–1038.

[62] P. Naumov, J. Tao, Second-order know-how strategies, in: Proceedings of
the 2018 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2018, pp. 390–398.

[63] P. Naumov, J. Tao, Strategic coalitions with perfect recall, in: Proceedings
of Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[64] Y. Wang, A logic of knowing how, in: Logic, Rationality, and Interaction,
Springer, 2015, pp. 392–405.

[65] Y. Wang, A logic of goal-directed knowing how, Synthese 195 (10) (2018)
4419–4439.

[66] Y. Li, Y. Wang, Achieving while maintaining: A logic of knowing how with
intermediate constraints, in: Logic and Its Applications: Proceedings of 7th
Indian Conference, ICLA 2017, Kanpur, India, January 5-7, 2017, Springer,
2017, pp. 154–167.

[67] H. Geffner, Planning with incomplete information, in: International Work-
shop on Model Checking and Artificial Intelligence, Springer, 2010, pp. 1–
11.

[68] G. De Giacomo, A. Murano, S. Rubin, A. Di Stasio, Imperfect-information
games and generalized planning, in: IJCAI, 2016, pp. 1037–1043.

[69] D. Ferguson, A. Stentz, Planning with imperfect information, in: Intelligent
Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ In-
ternational Conference on, Vol. 2, IEEE, 2004, pp. 1926–1931.

37

[70] C. Hoare, An axiomatic basis for computer programming, Communications
of the ACM 12 (1969) 576–580.

[71] G. Rosu, A. Stefanescu, S. Ciobâca, B. M. Moore, One-path reachability
logic, in: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, IEEE, 2013, pp. 358–367.

[72] T. Ågotnes, D. Walther, A logic of strategic ability under bounded memory,
Journal of Logic, Language and Information 18 (1) (2009) 55–77.

[73] T. Brihaye, A. Da Costa, F. Laroussinie, N. Markey, ATL with strategy con-
texts and bounded memory, in: International Symposium on Logical Foun-
dations of Computer Science, Springer, 2009, pp. 92–106.

[74] S. Vester, Alternating-time temporal logic with finite-memory strategies, in:
Proceedings GandALF 2013, EPTCS 119, 2013, pp. 194–207.

[75] F. Belardinelli, A. Lomuscio, V. Malvone, Approximating perfect recall
when model checking strategic abilities, in: Sixteenth International Confer-
ence on Principles of Knowledge Representation and Reasoning, 2018.

[76] H. Garcia-Molina, J. Ullman, J. Widom, Database Systems: The Complete
Book, 2nd Edition, Prentice-Hall, 2009.

[77] W. W. Armstrong, Dependency structures of data base relationships, in: In-
formation Processing 74 (Proc. IFIP Congress, Stockholm, 1974), North-
Holland, Amsterdam, 1974, pp. 580–583.

[78] E. Mendelson, Introduction to mathematical logic, CRC press, 2009.

38

