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Abstract

If an agent, or a coalition of agents, knows that it has a strategy to achieve a
certain outcome, it does not mean that the agent knows what the strategy is.
Even if the agent knows what the strategy is, she might not know the price of
executing this strategy.

The article considers modality “the coalition not only knows the strategy, but
also knows an upper bound on the price of executing the strategy”. The main
technical result is a sound and complete bimodal logical system that describes
the interplay between this modality and the distributed knowledge modality.

1. Introduction

In this article we study situations when an agent or a coalition of agents
might have a strategy to achieve a certain goal at a price possibly unknown to
the agent. An example of such a setting is an auction with the right of first
refusal. In such an auction, an agent, who is not bidding at the auction, has a
right to buy the item at the price offered by the winner of the auction. United
States National Park Service previously used such auctions to award concession
contracts with the right of first refusal given to the current concessioner [1].
Taiwanese government uses them to sell land [2]. In general, provisions with
the right of first refusal are common in real estate, securities, and employment
contracts [3].

Suppose that Alice and Bob are two bidders at first-price sealed-bid auction
where Donald has the right of first refusal. In other words, Alice and Bob submit
sealed bids and Donald has a right to match the highest bid after the bids are
unsealed. We assume that all agents are rational and will not bid higher than
their reservation prices.
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If Alice’s reservation price is lower than Donald’s, then, no matter what
Bob’s reservation price is, she does not have a winning strategy because Donald
might always decide to match the highest bid. We write this as

¬Sa(“Alice wins the auction.”),

where, in general, modal formula SCϕ stands for “coalition of agents C has a
strategy to achieve ϕ”. The coalition power modality SC was first introduced
by Marc Pauly [4, 5]. His approach has been widely studied in the literature.
Goranko studied relation between Marc Pauly’s coalition logic and alternating-
time temporal logics [6]. van der Hoek and Wooldridge introduced a related
Coalition Logic of Propositional Control [7] in which an agent’s actions are re-
stricted to assigning Boolean values to variables. Borgo suggested a translation
from the coalition logic to a fragment of the action logic [8]. Ågotnes, Balbiani,
van Ditmarsch and Seban introduced a group announcement logic that combines
the coalition logic and the logic of public announcements [9]. Ågotnes, van der
Hoek, and Wooldridge added preference comparison to the coalition logic [10].
Goranko and Enqvist gave a complete axiomatization for modality “coalition
can achieve a goal while leaving a possibility for the other agents to achieve
another goal”. They call it “socially friendly” coalition power modality [11].

Suppose now that Alice’s reservation price is the highest among all three of
them. Then, she has a strategy to win the auction by submitting a bid equal
to her reservation price:

Sa(“Alice wins the auction.”).

However, since she does not know that her reservation price is the highest, she
does not know that she has a winning strategy:

¬KaSa(“Alice wins the auction.”).

In general, by formula KCϕ we denote that coalition C has a distributed knowl-
edge of ϕ. A complete logical system for modalities SC and KC has been pro-
posed by Ågotnes and Alechina [12].

Let us now consider the case when Alice has no reservation price and she is
ready to submit a bid as high as needed to win over Bob and Donald, who still
have reservation prices. In this setting Alice has a strategy to win the auction
by bidding higher than Bob’s and Donald’s reservation prices and she knows
this:

KaSa(“Alice wins the auction.”).

However, if she does not know their reservation prices, she does not know how
much she should bid to win the auction. In other words, she does not know how
to win the action. We write this as

¬Ha(“Alice wins the auction.”).

In general, modal formula HCϕ stands for “coalition of agents C knows how to
achieve ϕ”. The distinction between an agent “having a strategy”, “knowing
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that the strategy exists”, and “knowing what the strategy is” has been studied
before.

Different terms have been used for what we call “know-how”. While Jamroga
and Ågotnes talked about “knowledge to identify and execute a strategy” [13],
Jamroga and van der Hoek discussed “difference between an agent knowing that
he has a suitable strategy and knowing the strategy itself” [14]. Van Benthem
called such strategies “uniform” [15]. Broersen talked about “knowingly do-
ing” [16], while Broersen, Herzig, and Troquard discussed modality “know they
can do” [17]. Naumov and Tao called such strategies “executable” [18]. Wang
talked about “knowing how” [19, 20].

Multiple logical systems for capturing properties of know-how have been
proposed in the literature. Wang gave a complete axiomatization of “knowing
how” as a binary modality [19, 20]. Li and Wang introduced a logical sys-
tem for a ternary know-how modality with intermediate constraints [21]. These
systems are for a single agent and they do not include a knowledge modality.
Ågotnes and Alechina [22] proposed a complete axiomatization of an interplay
between a single-agent knowledge modality and a coalition know-how modality
to achieve a goal in one step. A complete modal logic that combines the dis-
tributed knowledge modality with the coalition know-how modality to maintain
a goal indefinitely was given by Naumov and Tao [18]. A sound and complete
logical system in a single-agent setting for know-how strategies to achieve a goal
in multiple steps was developed by Fervari, Herzig, Li, and Wang [23]. A com-
plete logical system that describes an interplay between modalities KC , SC , and
HC in one-shot was introduced by Naumov and Tao [24, 25]. They also proposed
a logical system that describes the interplay between modalities KC and HC in
the perfect recall setting [26] and another logical system for the second-order
know-how [27].

Going back to our example, let us now assume that Alice and Bob have
reservation prices and Donald does not. In this case, Donald has a winning
strategy (use the right of first refusal to match the highest bid), he knows that
he has a strategy, and he knows what the strategy is:

Hd(“Donald wins the auction”). (1)

Note that, before the auction starts, he does not know the price that he will
have to pay. Not only he does not know the exact price, he cannot put any
limit on how much he might end up paying if he commits to that strategy. He
only knows that the price is a finite number. For this reason, we will write
formula (1) as

H∞d (“Donald wins the auction”).

However, if we suppose that Donald knows reservation prices ra and rb of Alice
and Bob respectively, then he would know that the strategy to win the auction
will cost him at most max{ra, rb}. We denote this by

H
max{ra,rb}
d (“Donald wins the auction”).
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In general, by Hp
Cϕ we denote the fact that (a) coalition C has a strategy to

achieve ϕ, (b) it knows that it has such strategy, (c) it knows what the strategy
is, and (d) it knows that the total price of using this strategy for the whole
coalition is at most p.

A complete logical system for modality SpC , “coalition C has a strategy
with the price of at most p”, has been proposed by Alechina, Logan, Nguyen,
and Rakib [28] under name Resource-Bounded Coalition Logic (RBCL). Model
checking for RBCL and resource-bounded Alternating-time Temporal Logic
have been widely studied [29, 30, 31, 32, 33, 34, 35]. We proposed a com-
plete logical system for modality “an agent a can achieve ϕ with a profit p on a
budget b” [36].

Examples of real-life caps on cost of strategies are insurance deductibles
and umbrella insurances. In computer science it is common to analyze worst-
case algorithm execution time. At the same time, just like in our modality
H∞C ϕ, upper limit on the cost or the time might not be known. For instance, a
car driver might have a strategy to get from point A to point B, but the time
required to do this might vary drastically in rush hours. A software development
team might know how to finish a project, but it might not be able to estimate
the time it would take. In many cases, an AI system acting in such situations
would not only need to know that a limit to the potential cost of pursuing a
strategy exists, but also to know what this limit is.

The contribution of this article is two-fold. First, we introduce a new epis-
temic modality “knowing the price of achieving a goal” Hp

C . This modality
cannot be expressed as KCS

p
C or as some other combination of modalities SpC ,

KC , and HC , that have been studied before. Additionally, we propose a sound
and complete logical system that captures the interplay between modalities KC

and Hp
C , where parameter p is either a non-negative real number or the infinity.

This work is closely related to two previous articles on know-how logics in
this journal [25, 37]. These three works, however, study different aspects of
know-how and use different constructions for the proof of completeness. In [25],
Naumov and Tao described the interplay between coalition modalities KC , SC ,
and HC . To prove the completeness, they proposed a novel “harmony” tech-
nique. In [37], they studied single-agent modalities Kr

a and Hr
a whose semantics

is defined using metric spaces instead of indistinguishability relation. Formula
Kr
aϕ means that statement ϕ is true in a ball of radius r around the current

state using the metric of agent a. Formula Hr
aϕ means that single agent a has

a strategy to achieve ϕ that works at each point of the same ball. To prove the
completeness, they used “twin node” construction in which each state of the
model has a twin state. Exactly the same formulae are satisfied in both twin
states. In the current work we study coalition modalities KC and Hp

C . Formula
KCϕ means, just like in [25], that statement ϕ is true in the set of all states
indistinguishable from the current state by coalition C. Formula Hp

C means
that coalition C has a strategy that works in all points of this set and costs
no more than p to the coalition. The semantics of this modality is a natural
generalization of the semantics of modality HC [25] and is very different from
the metric space based semantics of Hp

C [37]. The proof of the completeness
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in the current work does not use harmony construction from [25]. Instead, it
generalizes twin node construction of [37] to infinitely many twin nodes with
unbounded costs, see Definition 4. This generalization was not needed in the
proof of the completeness for Resource-Bounded Coalition Logic [28] because
this logic includes neither knowledge nor infinite costs.

The rest of the article is structured as follows. In the next section we intro-
duce the syntax and the formal semantics of our logical system and illustrate
them using the introductory example. In Section 3 we list the axioms and the
inference rules of our logical system, compare them to similar axioms in the
literature, and give examples of formal proofs in our logical system. The sound-
ness and the completeness of our system are shown in Section 4 and Section 5
respectively. Section 6 concludes.

2. Syntax and Semantics

Throughout the article we assume a fixed set of agents A and a fixed
nonempty set of propositional variables. By a coalition we mean any finite
subset of A. In this section we define the syntax and the formal semantics of
our logical system.

Definition 1. Let Φ be the minimal set of formula such that

1. v ∈ Φ for each propositional variable v,
2. ¬ϕ,ϕ → ψ,KCϕ,H

p
Cϕ ∈ Φ for any formulae ϕ,ψ ∈ Φ, and any coalition

C, where p is either a non-negative real number or ∞.

In other words, language Φ is defined by grammar

ϕ := v | ¬ϕ | ϕ→ ϕ | KCϕ | Hp
Cϕ.

Boolean constant ⊥ can be defined in our language in the standard way. For
any sets X and Y , by XY we denote the set of all functions from Y to X.

Definition 2. A tuple (W, {∼a}a∈A,∆, ‖ · ‖, ε,M, π) is called a game, where

1. W is a set of states,
2. ∼a is an indistinguishability equivalence relation on the set of states W

for each agent a ∈ A,
3. ∆ is a nonempty set called the domain of actions. A function that

assigns an action to each agent in set A is called a complete action
profile.

4. price ‖d‖aw of an action d ∈ ∆ to an agent a ∈ A in a state w ∈ W is a
non-negative real number,

5. ε ∈ ∆ is an zero-price action such that ‖ε‖aw = 0 for each agent a ∈ A
and each state w ∈W ,

6. M ⊆ W × ∆A ×W is a relation, called mechanism, that satisfies the
following nontermination property: for any state w ∈W and any com-
plete action profile δ ∈ ∆A there is at least one state u ∈ W such that
(w, δ, u) ∈M ,
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7. function π maps propositional variables into subsets of W .

Next, we illustrate how our first example from the introduction, when all three
agents have finite reservation prices, can be formalized as a game from Defini-
tion 2.

The introduction describes the game as an extensive-form game in which
Alice and Bob submit simultaneous bids and Donald decides to match or not to
match the highest bid only after the bids are unsealed. Here we would like to
re-phrase this game as a normal-form game between the three players. To do
this, we need Donald not to make the decision after the bids are unsealed, but
to commit to a certain strategy before the auction starts. Such strategy could
be described as setting the highest bid value that Donald is willing to match
using the right of first refusal1. This value could be any number between zero
and Donald’s reservation price. Hence, when viewed as a normal-form game, the
action consists in Alice and Bob choosing their bid values and Donald choosing
the highest bid value that he is willing to match.

Definition 2 is general enough to allow system to transition between states
multiple number of times as, for example, in repetitive normal-form games. In
our original example the game is played only once. Thus, the states of the game
naturally split into initial and final states. The initial states of the game are all
possible triples of non-negative numbers (ra, rb, rd) that represent Alice’s, Bob’s,
and Donald’s reservation prices. There are three final states that correspond to
Alice, Bob, and Donald winning the auction.

Alice can not distinguish two initial states if she has the same reservation
price ra in both states. She can distinguish final states between themselves and
final states from the initial states. The same is true for Bob and Donald with
respect to their reservation prices rb and rd respectively.

So far, we said that Alice and Bob are choosing their bid values and Donald
is choosing the highest bid value that he is willing to match. However, all three
of these values cannot be higher than their respective reservation prices. Thus,
the domain of action of each agent is different and it also changes from state to
state. To reconcile this with Definition 2, we assume that the action consists
in choosing the value as a fraction of the reservation price. For example, if
Alice’s reservation price is 70 and her bid is 35, then the action is 0.5. With this
adjustment, the domain of actions for each agent in each state is the interval
[0, 1].

In our example, the price ‖d‖aw of an action d ∈ [0, 1] for an agent a is equal
to d · ra, where ra is the reservation price of agent a in state w. In Definition 2,
we assume that the price of an action depends on the agent invoking the action
and the state in which the action is invoked. One might consider alternative
definitions where the price of the action depends on the complete action profile,
similarly to a utility function in game theory. In addition to the complete action
profile, price also might depend on the outcome of the game. Although more

1Thus, we further restrict Donald’s strategies to monotonic one: if Donald is willing to
match a price, we assume that he is also willing to match any lower price.
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general, these alternative versions of Definition 2 would not change the results
in this article.

In case of the auction with the right of the first refusal, action 0 ∈ [0, 1] is
the zero-price action. The existence of a zero-price action, known to each agent
to be zero-price, is an important assumption. H-Necessitation inference rule of
our logical system is not valid without this assumption. The assumption of the
existence of a zero-price action allows us to capture the informal meaning of the
price to achieve a result. Indeed, consider a situation when an agent has only
two actions priced at 2 and 5. Suppose that the action with price 5 leads to
the desired outcome and the action with price 2 does not. We believe that the
price of success in this case is 3, not 5. One might choose to define the price of
success as the difference between the price of the needed action and the minimal
price of the available actions. However, such minimum might not exist if the
number of available actions is infinite. Thus, we have chosen to have an explicit
zero-price action available to each agent. Alechina, Logan, Nguyen, and Rakib
made the same choice in their Resource-Bounded Coalition Logic [28].

When describing our introductory example, we did not discuss what is the
outcome of the auction if Alice and Bob submit equal bids and Donald decides
not to exercise the right of the first refusal. Let us assume that in this situation
the winner of the auction is chosen randomly from Alice and Bob. This means
that the outcome of the game is not completely determined by the actions of
the agents. To capture such situations we define mechanism M as a relation
between the initial state, the complete action profile, and the outcome state.
This approach allows multiple outcome states for the same initial state and the
same complete action profile.

For any coalition C, we write w ∼C w′ if w ∼a w
′ for each agent a ∈ C.

Similarly, for any two functions f and g, we write f =C g if f(a) = g(a) for
each a ∈ C. By an action profile of a coalition C we mean any function from C
to ∆.

Next is the key definition of this article. Its part (5) defines modality Hp
C .

Informally, it says that a coalition C knows how to achieve ϕ at a price at most
p if there is an action profile of the coalition C such that (a) total price of the
action profile is at most p in any state w′ indistinguishable to coalition C from
the given state and (b) coalition C will achieve ϕ by using this action profile in
any such state w′.

Definition 3. For any formula ϕ ∈ Φ and any state w ∈W of a game (W, {∼a

}a∈A,∆,M, π), let satisfiability relation w 
 ϕ be defined as follows

1. w 
 v if w ∈ π(v) where v is a propositional variable,
2. w 
 ¬ϕ if w 1 ϕ,
3. w 
 ϕ→ ψ if w 1 ϕ or w 
 ψ,
4. w 
 KCϕ if w′ 
 ϕ for each w′ ∈W such that w ∼C w′,
5. w 
 Hp

Cϕ if there is an action profile s ∈ ∆C such that
(a) for each w′ ∈W , if w ∼C w′, then

∑
a∈C ‖s(a)‖aw′ ≤ p,

(b) for any two states w′, u ∈W and any complete action profile δ ∈ ∆A,
if w ∼C w′, s =C δ, and (w′, δ, u) ∈M , then u 
 ϕ.

7



In particular, w 
 K∅ϕ means that formula ϕ is true in each state of the game
and w 
 Hp

∅ϕ means that ϕ will unavoidably happen in the next state.
If item (a) is removed from item 5 above, then the result will be the defi-

nition of the know-how modality previously used in [22, 18, 23, 24, 25, 26, 27].
Alternatively, if the condition w ∼C w′ in items (a) and (b) is replaced with the
condition w = w′, then the result is essentially equivalent to the definition of the
modality SpC in Resource-Bounded Coalition Logic [28]. Note also that in item 5
the existential quantifier over action profile s ∈ ∆C precedes the universal quan-
tifiers over state w′ ∈ W . If the order of quantifiers is changed, the definition
will capture semantics of KCS

p
Cϕ instead of Hp

Cϕ. In spite of the semantics in
Definition 3 being so close to the know-how modality semantics and the resource
bounded power modality semantics, as discussed in the introduction, the proof
of the completeness of our logical system requires a significant modification to
the earlier constructions.

3. Axioms and Inference Rules

In addition to propositional tautologies, our logical system consists of the
following axioms:

1. Truth: KCϕ→ ϕ,

2. Negative Introspection: ¬KCϕ→ KC¬KCϕ,

3. Distributivity: KC(ϕ→ ψ)→ (KCϕ→ KCψ),

4. Coalition Monotonicity: KCϕ→ KDϕ, where C ⊆ D,

5. Price Monotonicity: Hp
Cϕ→ Hq

Cϕ, where p ≤ q,
6. Strategic Introspection: Hp

Cϕ→ KCH
p
Cϕ,

7. Cooperation: Hp
C(ϕ→ ψ)→ (Hq

Dϕ→ Hp+q
C∪Dψ), where C ∩D = ∅,

8. Know-How of Empty Coalition: Hp
∅ϕ→ H0

∅ϕ,

9. Knowledge of Empty Coalition: K∅ϕ→ H0
∅ϕ,

10. Unachievability of Falsehood: ¬H∞C ⊥.

We write ` ϕ if there is a finite sequence of formulae that ends with formula
ϕ and each formula in the sequence is either one of the axioms or is obtained
from the preceding formulae using the Modus Ponens, the K-Necessitation, or
H-Necessitation

ϕ,ϕ→ ψ

ψ
,

ϕ

KCϕ
,

ϕ

H0
Cϕ

.

inference rule. If ` ϕ then we say that ϕ is a theorem of our logical system.
We write X ` ϕ if formula ϕ is provable from the theorems of our logical sys-

tem and a set of additional formulae X using only the Modus Ponens inference
rule. Then, ∅ ` ϕ is equivalent to ` ϕ.

The Truth, the Negative Introspection, the Distributivity, and the Mono-
tonicity axioms are the standard axioms of the epistemic logic of distributed
knowledge [38]. The Price Monotonicity axiom states that if a coalition knows
how to achieve a goal at a price no more than p and p ≤ q, then the same

8



coalition also knows how to achieve the goal at a price no more than q. This
axiom for modality SpC first appeared in [28]. The monotonicity principle for
the subscript of the modality Hp

C is also true, but it is provable from the rest
of the axioms of our logical system, see Lemma 3. The Strategic Introspection
axiom states that if a coalition knows how to achieve a goal at a price no more
than p, then the coalition knows that it knows how. This axiom first appeared
in [22] and later was used in [18, 23, 24, 25, 26, 27].

The Cooperation axiom shows how the powers of two disjoint coalitions
could be combined to achieve a common goal. This axiom for coalition in the
form SC(ϕ → ψ) → (SDϕ → SC∪Dψ) was first proposed by Marc Pauly [4, 5].
The same axiom for modality SpC in the form SpC(ϕ → ψ) → (SqDϕ → Sp+q

C∪Dψ)
was given in [28], where they assume that p and q are not numbers, but vectors
of “resources”. The Cooperation axiom for know-how modality HC(ϕ→ ψ)→
(HDϕ→ HC∪Dψ) first appeared in [22] and later was used in [18, 24, 25, 26, 27].

The Know-How of Empty Coalition axiom captures the fact that price of
any action profile of the empty coalition is zero. A similar axiom for modality
SpC comes from [28]. Finally, the Knowledge of Empty Coalition axiom states
that if a statement is true in all states of the system, then the empty coalition
can achieve it at zero price. This axiom for modality HC first appeared in [18]
and is also used in [24, 25, 26, 27].

The Unachievability of Falsehood axiom states that no coalition has a strat-
egy to achieve a contradiction. This axiom captures nontermination assumption
of Definition 2, item 6. The axiom first appeared in [26].

In the rest of the section we prove five statements about our logical system
that will be used later in the proof of the completeness. The third of these
statements, Lemma 3, is the monotonicity principle on subscript of modality
Hp

C mentioned earlier in this section.

Lemma 1 (deduction). If X,ϕ ` ψ, then X ` ϕ→ ψ.

Proof. Since X,ϕ ` ψ refers to the provability without the use of the K-
Necessitation and H-Necessitation inference rules, the standard proof of deduc-
tion lemma for propositional logic [39, Proposition 1.9] applies to our system as
well. �

Lemma 2 (Lindenbaum). Any consistent set of formulae can be extended to
a maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma applies here [39, Proposi-
tion 2.14]. However, since the formulae in our logical system use real numbers
in superscript, the set of formulae is uncountable. Thus, the proof of Linden-
baum’s lemma in our case relies on the Axiom of Choice. �

Lemma 3. ` Hp
Cϕ→ Hp

Dϕ, where C ⊆ D.
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Proof. Note that ϕ→ ϕ is a propositional tautology. Hence, ` H0
D\C(ϕ→ ϕ)

by the Necessitation inference rule.
At the same time, ` H0

D\C(ϕ → ϕ) → (Hp
Cϕ → Hp

Dϕ) by the Cooperation

axiom because of the assumption C ⊆ D. Therefore, ` Hp
Cϕ → Hp

Dϕ by the
Modus Ponens inference rule. �

The next lemma is a generalization of the Distributivity and the Cooperation
axioms.

Lemma 4. If ϕ1, . . . , ϕn ` ψ, then

1. KCϕ1, . . . ,KCϕn ` KCψ,

2. Hp1

C1
ϕ1, . . . ,H

pn

Cn
ϕn ` Hp1+···+pn

C1∪···∪Cn
ψ, where sets C1,. . . ,Cn are pairwise dis-

joint.

Proof. To prove statement (2), apply n times Lemma 1 to the assumption
ϕ1, . . . , ϕn ` ψ. Then, ` ϕ1 → (· · · → (ϕn → ψ)). Thus,

` H0
∅(ϕ1 → (· · · → (ϕn → ψ))),

by the H-Necessitation inference rule. Hence,

` Hp1

C1
ϕ1 → Hp1

C1
(ϕ2 · · · → (ϕn → ψ))

by the Cooperation axiom and the Modus Ponens inference rule. Then,

Hp1

C1
ϕ1 ` Hp1

C1
(ϕ2 · · · → (ϕn → ψ))

by the Modus Ponens inference rule. Thus, again by the Cooperation axiom
and Modus Ponens,

Hp1

C1
ϕ1 ` Hp2

C2
ϕ2 → Hp1+p2

C1∪C2
(ϕ3 · · · → (ϕn → ψ)).

Therefore, Hp1

C1
ϕ1, . . . ,H

pn

Cn
ϕn ` Hp1+···+pn

C1∪···∪Cn
ψ, by repeating the last two steps

n− 2 times.
The proof of the first statement is similar, but it uses the K-Necessitation

inference rule and the Distributivity axiom instead of the H-Necessitation infer-
ence rule and the Cooperation axiom. �

Our final statement is the well-known positive introspection principle for
the distributed knowledge. We reproduce its proof here to keep the article
self-contained.

Lemma 5. ` KCϕ→ KCKCϕ.

Proof. Formula KC¬KCϕ→ ¬KCϕ is an instance of the Truth axiom. Thus, `
KCϕ→ ¬KC¬KCϕ by contraposition. Hence, taking into account the following
instance of the Negative Introspection axiom: ¬KC¬KCϕ→ KC¬KC¬KCϕ, we
have

` KCϕ→ KC¬KC¬KCϕ. (2)
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At the same time, ¬KCϕ → KC¬KCϕ is an instance of the Negative In-
trospection axiom. Thus, ` ¬KC¬KCϕ → KCϕ by the law of contraposi-
tive in the propositional logic. Hence, by the K-Necessitation inference rule,
` KC(¬KC¬KCϕ → KCϕ). Thus, by the Distributivity axiom and the Modus
Ponens inference rule, ` KC¬KC¬KCϕ → KCKCϕ. The latter, together with
statement (2), implies the statement of the lemma by propositional reason-
ing. �

4. Soundness

The proof of soundness of the Truth, the Negative Introspection, the Dis-
tributivity, and the Coalition Monotonicity axioms and the K-Necessitation in-
ference rule is identical to the proof of their soundness in the epistemic logic of
the distributed knowledge [38]. The soundness of the H-Necessitation inference
rule follows from the existence of a zero-price action for each member of any
coalition C. Below we prove the soundness of each of the remaining axioms as
a separate lemma. We state the soundness of our logical system as Theorem 1
in the end of this section.

Lemma 6. If w 
 Hp
Cϕ and p ≤ q, then w 
 Hq

Cϕ.

Proof. By Definition 3, assumption w 
 Hp
Cϕ implies that there is an action

profile s ∈ ∆C of coalition C such that

1. for each w′ ∈W , if w ∼C w′, then
∑

a∈C ‖s(a)‖aw′ ≤ p,
2. for any two states w′, u ∈ W and any complete action profile δ ∈ ∆A, if
w ∼C w′, s =C δ, and (w′, δ, u) ∈M , then u 
 ϕ.

Hence, by the assumption p ≤ q and the first statement above, for each w′ ∈W ,
if w ∼C w′, then

∑
a∈C ‖s(a)‖aw′ ≤ p ≤ q. Therefore, w 
 Hq

Cϕ by Defini-
tion 3. �

Lemma 7. If w 
 Hp
Cϕ, then w 
 KCH

p
Cϕ.

Proof. By Definition 3, assumption w 
 Hp
Cϕ implies that there is an action

profile s ∈ ∆C of coalition C such that

(a) for each w′ ∈W , if w ∼C w′, then
∑

a∈C ‖s(a)‖aw′ ≤ p,
(b) for any two states w′, u ∈ W and any complete action profile δ ∈ ∆A, if

w ∼C w′, s =C δ, and (w′, δ, u) ∈M , then u 
 ϕ.

Consider any state v ∈ W such that w ∼C v. By Definition 3, it suffices to
prove that v 
 Hp

Cϕ. Again by Definition 3, it suffices to show that

1. for each v′ ∈W , if v ∼C v′, then
∑

a∈C ‖s(a)‖av′ ≤ p,
2. for any two states v′, u ∈ W and any complete action profile δ ∈ ∆A, if
v ∼C v′, s =C δ, and (v′, δ, u) ∈M , then u 
 ϕ.
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Since w ∼C v ∼C v′, the first statement follows from statement (a). Similarly,
the second statement follows from statement (b). �

Lemma 8. If w 
 Hp
C(ϕ → ψ) and w 
 Hq

Dϕ, then w 
 Hp+q
C∪Dψ, where

C ∩D = ∅.

Proof. By Definition 3, assumption w 
 Hp
C(ϕ → ψ) implies that there is an

action profile s1 ∈ ∆C of coalition C such that

(a) for each w′ ∈W , if w ∼C w′, then
∑

a∈C ‖s1(a)‖aw′ ≤ p,
(b) for any two states w′, u ∈ W and any δ ∈ ∆A, if w ∼C w′, s1 =C δ, and

(w′, δ, u) ∈M , then u 
 ϕ→ ψ.

Similarly, assumption w 
 Hq
Dϕ implies that there is an action profile s2 ∈ ∆D

of coalition D such that

(c) for each w′ ∈W , if w ∼D w′, then
∑

a∈D ‖s2(a)‖aw′ ≤ q,
(d) for any two states w′, u ∈ W and any δ ∈ ∆A, if w ∼D w′, s2 =D δ, and

(w′, δ, u) ∈M , then u 
 ϕ.

Consider the following action profile s ∈ ∆C∪D of coalition C ∪D:

s(a) =

{
s1(a), if a ∈ C,
s2(a), if a ∈ D.

The action profile s is well-defined due to the assumption of the lemma that
sets C and D are disjoint. Note that s =C s1 and s =D s2. Thus, statements
(a), (b), (c), and (d) by Definition 3 imply that

1. for each w′ ∈W , if w ∼C∪D w′, then∑
a∈C∪D

‖s(a)‖aw′ ≤
∑
a∈C
‖s1(a)‖aw′ +

∑
a∈D
‖s2(a)‖aw′ ≤ p+ q.

2. for any two states w′, u ∈ W and any δ ∈ ∆A, if w ∼C∪D w′, s =C∪D δ,
and (w′, δ, u) ∈M , then u 
 ψ.

Therefore, w 
 Hp+q
C∪Dψ again by Definition 3. �

Lemma 9. If w 
 Hp
∅ϕ, then w 
 H0

∅ϕ.

Proof. By Definition 3, assumption w 
 Hp
∅ϕ implies that there is an action

profile s ∈ ∆∅ of the empty coalition such that, in particular,

1. for any two states w′, u ∈ W and any complete action profile δ ∈ ∆A, if
w ∼∅ w′, s =∅ δ, and (w′, δ, u) ∈M , then u 
 ϕ.

At the same time,
∑

a∈∅ ‖s(a)‖aw′ = 0, for each w′ ∈ W . Therefore, w 
 H0
∅ϕ

by Definition 3. �
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Lemma 10. If w 
 K∅ϕ, then w 
 H0
∅ϕ.

Proof. By Definition 3, assumption w 
 K∅ϕ implies that u 
 ϕ for each
state u ∈ W . Let s ∈ ∆∅ be the unique action profile of the empty coalition.
Then,

1.
∑

a∈∅ ‖s(a)‖aw′ = 0, for each w′ ∈W ,

2. for any two states w′, u ∈ W and any δ ∈ ∆A, if w ∼∅ w′, s =∅ δ, and
(w′, δ, u) ∈M , then u 
 ϕ.

Therefore, w 
 H0
∅ϕ by Definition 3. �

Lemma 11. w 1 H∞C ⊥.

Proof. Suppose that w 
 H∞C ⊥. Thus, by Definition 3, there is an action
profile s ∈ ∆C such that

1. for any two states w′, u ∈ W and any complete action profile δ ∈ ∆A, if
w ∼C w′, s =C δ, and (w′, δ, u) ∈M , then u 
 ⊥.

By item 2 of Definition 2, the domain of actions ∆ is not empty. Let d be any
action in set ∆. Consider action profile

δ(a) =

{
s(a), if a ∈ C,
d, otherwise.

Note that s =C δ. Choose w′ to be state w. By the nontermination condition of
Definition 2, item 6, there is a state u ∈W such that (w, δ, u) ∈M . Therefore,
u 
 ⊥ by item 1 above, which is a contradiction. �

Theorem 1 (soundness). If Y ` ϕ, then for each state w of each game, if
w 
 χ for each formula χ ∈ Y , then w 
 ϕ. �

5. Completeness

In this section we prove the completeness of our logical system. We start
by defining, for any maximal consistent set of formulae X0, the canonical game
G(X0) = (W, {∼a}a∈A,∆, ‖ · ‖, ε,M, π). Since the language of our logical sys-
tem contains distributed knowledge modality KC , as a part of our construction
of the canonical game G(X0), we indirectly construct a canonical model for the
epistemic logic of distributed knowledge. Constructing such a model is a sig-
nificantly more complicated task than constructing a canonical model for the
epistemic logic of individual knowledge. In the case of the individual knowledge,
states of the canonical model are the maximal consistent sets of formulae. States
w and w′ are in the relation ∼a if these two sets of formulae have the same Ka-
formulae. This construction needs to be modified significantly in order to be
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used for the distributed knowledge. Indeed, if w ∼{a,b} w′, then the construc-
tion only guarantees that sets w and w′ have the same Ka- and Kb-formulae.
It does not guarantee that sets w and w′ have the same K{a,b}-formulae. To
guarantee that w and w′ also have the same K{a,b}-formulae, we use a tree con-
struction described below. Lemma 13 shows that the tree construction achieves
the intended goal.

Since Resource-Bounded Coalition Logic semantics does not incorporate the
distributed knowledge in any form, the proof of the completeness for RBCL does
not use the tree construction [28]. The tree construction has been previously
used in other works on know-how logics with distributed knowledge [18, 24,
25, 26, 27]. The proof of completeness below significantly extends the tree
construction from these previous works by an introduction of an extra label ri
on each node of the tree, see Definition 4 below. Presence of this new parameter
creates infinitely many otherwise indistinguishable nodes in the same tree. Such
infinite sets of indistinguishable nodes are needed to model know-how strategies
with unbounded costs.

Definition 4. The set of states W consists of all finite sequences
(X0, r0), C1, (X1, r1), . . . , Cn, (Xn, rn) such that

1. n ≥ 0,
2. Xi is a maximal consistent set of formulae for each i ≥ 1,
3. r0 = 0 and ri ∈ [0,+∞) for each i ≥ 1,
4. Ci is a finite subset of A for each i ≥ 1,
5. {ϕ ∈ Φ | KCi−1

ϕ ∈ Xi−1} ⊆ Xi for each i ≥ 1.

If w is state (X0, r0), C1, (X1, r1), . . . , Cn, (Xn, rn), then by X(w) and r(w) we
mean set Xn and real number rn respectively. Also, for any sequence x =
x1, . . . , xn and an element y, by x :: y we mean the sequence x1, . . . , xn, y.

We define an undirected labeled tree structure on the set of states W by
saying that node

(X0, r0), C1, (X1, r1), . . . , Cn−1, (Xn−1, rn−1)

and node

(X0, r0), C1, (X1, r1), . . . , Cn−1, (Xn−1, rn−1), Cn, (Xn, rn)

are adjacent. The edge between these two nodes is labeled with each agent in
coalition Cn, see Figure 1.

Definition 5. For any states w1, w2 ∈ W , let w1 ∼a w2 if all edges along the
unique simple path between nodes w1 and w2 are labeled with agent a.

Lemma 12. Relation ∼a is an equivalence relation on set W . �

Many previous works on the logics of coalition power [18, 24, 25, 26, 27,
40] use different modifications of the same basic idea behind the mechanism
construction: the domain of actions is the set of all formulae, and (w, δ, w′) ∈M
iff for each formula HCϕ ∈ X(w) if δ(a) = ϕ for each a ∈ C, then ϕ ∈ X(w′).
Below we adopt this idea for our setting.
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X1,r1

X0,0

X5,r5

X2,r2 X3,r3 X4,r4 X6,r6 X7,r7

C1

C2 C3 C4

C5

C6 C7

Figure 1: A fragment of the tree formed by states.

Definition 6. Set ∆ consists of a fixed zero-price action ε in addition to all
triples (ϕ,C, p) such that ϕ ∈ Φ is a formula, C is a nonempty coalition, and p
is either a non-negative real number or positive infinity ∞.

Next, we define the price function in the canonical model. There are several
cases to consider. The price of the zero-price action is zero. If p < ∞, then
the price of action (ϕ,C, p) is set to p

|C| so that if each member of coalition C

chooses this action, then the total price to the whole coalition C is p. Finally,
if p =∞, then we want the price of the action to be finite but to have no upper
bound in ∼C equivalence class of the current state. In other words, for any real
number r we want there to be a state indistinguishable to coalition C from the
current state, where the price of action (ϕ,C, p) to each agent is higher than r.

Definition 7. For each action d ∈ ∆, each agent a ∈ A, and each state w ∈W ,
the price function ‖d‖aw is defined as follows:

‖ε‖aw = 0,

‖(ϕ,C, p)‖aw =


p

|C|
, if p ∈ [0,+∞),

r(w), if p =∞.

Note that according to the above definition, price ‖d‖aw in the canonical
game G(X0) does not depend on the agent a. Thus, in the rest of this section
we write ‖d‖aw simply as ‖d‖w.

Definition 8. Mechanism M is the set of all triples (w, δ, u) ∈ W ×∆A ×W
such that for each Hp

Cϕ ∈ X(w), if δ(a) = (ϕ,C, p) for each a ∈ C, then
ϕ ∈ X(u).

Definition 9. π(v) = {w ∈W | v ∈ X(w)}.

This concludes the definition of the canonical game G(X0). In Lemma 16
we prove the nontermination condition of Definition 2, item 6 is satisfied for
this game. Next, we show that the tree construction works as intended, see
introductory paragraph of Section 5.
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Lemma 13. If w ∼C w′, then KCϕ ∈ X(w) iff KCϕ ∈ X(w′).

Proof. By Definition 5, assumption w ∼C w′ implies that each edge along
the unique path between nodes w and w′ is labeled with all agents in coalition
C. Thus, it suffices to show that KCϕ ∈ X(w) iff KCϕ ∈ X(w′) for any two
adjacent nodes w and w′ along this path. Indeed, without loss of generality, let

w = (X0, r0), C1, (X1, r1), . . . , Cn−1, (Xn−1, rn−1)

w′ = (X0, r0), C1, (X1, r1), . . . , Cn−1, (Xn−1, rn−1), Cn, (Xn, rn).

The assumption that the edge between nodes w and w′ is labeled with all agents
in coalition C implies that C ⊆ Cn. We show next that KCϕ ∈ X(w) iff
KCϕ ∈ X(w′).
(⇒) : Suppose that KCϕ ∈ X(w) = Xn−1. Thus, Xn−1 ` KCKCϕ by Lemma 5.
Hence, Xn−1 ` KCn

KCϕ by the Monotonicity axiom and because C ⊆ Cn.
Hence, KCn

KCϕ ∈ Xn−1 because set Xn−1 is maximal. Then, KCϕ ∈ Xn =
X(w′) by Definition 4.
(⇐) : Suppose that KCϕ /∈ X(w) = Xn−1. Thus, ¬KCϕ ∈ Xn−1 because
set Xn−1 is maximal. Hence, Xn−1 ` KC¬KCϕ by the Negative Introspection
axiom. Hence, Xn−1 ` KCn

¬KCϕ by the Monotonicity axiom and because
Cn ⊆ C. Hence, KCn

¬KCϕ ∈ Xn−1 because set Xn−1 is maximal. Then,
¬KCϕ ∈ Xn by Definition 4. Therefore, KCϕ /∈ Xn = X(w′) because set Xn is
consistent. �

The next important milestone in the proof of the completeness is Lemma 17,
which sometimes is referred to as the “truth lemma”. This lemma connects the
syntax and the semantics of our logical system. However, to prove Lemma 17,
we need the following two auxiliary results.

Lemma 14. For any real number p ≥ 0, any formula KCϕ ∈ Φ, and any state
w ∈ W , if ¬KCϕ ∈ X(w), then there is a state w′ ∈ W such that w ∼C w′,
r(w′) > p, and ¬ϕ ∈ X(w′).

Proof. Consider set Y = {¬ϕ} ∪ {τ ∈ Φ | KCτ ∈ X(w)}. First, we prove
that set Y is consistent. Suppose the opposite. Thus, there are formulae
KCψ1, . . . ,KCψn ∈ X(w) such that ψ1, . . . , ψn ` ϕ. Hence, KCψ1, . . . ,KCψn `
KCϕ by Lemma 4. Thus, X(w) ` KCϕ by the choice of formulae KCψ1, . . . ,KCψn.
Then, ¬KCϕ /∈ X(w) because set X(w) is consistent, which contradicts the as-
sumption of the lemma. Therefore, set Y is consistent.

By Lemma 2, there is a maximal consistent extension Ŷ of set Y . Let w′ be
the sequence w :: C :: (Ŷ , p+ 1). Then, w′ ∈W by Definition 4. Also, w ∼C w′

by Definition 5 and r(w′) = p + 1 > p. Finally, ¬ϕ ∈ Y ⊆ Ŷ = X(w′) by the
choice of sets Y, Ŷ and the choice of sequence w′. �

Lemma 15. If ¬Hp
Cϕ ∈ X(w), then for each action profile s ∈ ∆C of coalition

C there is a complete action profile δ ∈ ∆A such that s =C δ and at least one
of the following is true
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1. there is a state w′ ∈W such that
∑

a∈C ‖δ(a)‖w′ > p and w ∼C w′, or

2. there is u ∈W such that (w, δ, u) ∈M and ¬ϕ ∈ X(u).

Proof. Let action profile δ ∈ ∆A be defined as

δ(a) =

{
s(a), if a ∈ C,
ε, otherwise.

(3)

Case I: p 6=∞ and there is a formula H∞Dψ ∈ X(w) and an agent a0 ∈ D, such
that D ⊆ C and ∀a ∈ D(s(a) = (ϕ,D,∞)). Thus,

s(a0) = (ϕ,D,∞). (4)

Formula KC⊥ → ⊥ is an instance of the Truth axiom. Thus, ` ¬KC⊥ by the
laws of propositional reasoning. Hence, ¬KC⊥ ∈ X(w) because set X(w) is
maximal. Then, by Lemma 14, there is a state w′ ∈W such that w ∼C w′ and
r(w′) > p. Hence, by equation (3), equation (4), and Definition 7,∑

a∈C
‖δ(a)‖w′ ≥ ‖δ(a0)‖w′ = ‖s(a0)‖w′

= ‖(ϕ,D,∞))‖w′ = r(w′) > p,

which proves item 1 of the lemma.
Case II: p =∞ or there is no formula H∞Dψ ∈ X(w) such that D is a nonempty
subset of C and ∀a ∈ D(s(a) = (ϕ,D,∞)). Consider set

Y = {¬ϕ} ∪ {ψ ∈ Φ | Hq
Dψ ∈ X(w),∅ 6= D ⊆ C,
∀a ∈ D(s(a) = (ψ,D, q))}

∪ {χ ∈ Φ | Ht
∅χ ∈ X(w)} ∪ {τ ∈ Φ | K∅τ ∈ X(w)}.

Suppose set Y is not consistent. Thus, there are formulae

Hq1
D1
ψ1, . . . ,H

qn
Dn
ψn ∈ X(w), (5)

Ht1
∅χ1, . . . ,H

tm
∅ χm ∈ X(w), (6)

and
K∅τ1, . . . ,K∅τk ∈ X(w) (7)

such that

qi ∈ [0,+∞] for all i ≥ 1,

ti ∈ [0,+∞] for all i ≥ 1,

∅ 6= Di ⊆ C for all i ≥ 1, (8)

s(a) = (ψi, Di, qi) for all i ≥ 1, a ∈ Di, (9)

and
ψ1, . . . , ψn, χ1, . . . , χm, τ1, . . . , τk ` ϕ. (10)
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Without loss of generality we can assume that formulae ψ1, . . . , ψn are dis-
tinct. Thus, sets D1, . . . , Dn are disjoint due to the statement (9).

Statement (10), by the Lemma 4, implies that

Hq1
D1
ψ1, . . . ,H

qn
Dn
ψn,H

0
∅χ1, . . . ,H

0
∅χm,H

0
∅τ1, . . . ,H

0
∅τk ` Hq1+···+qn

D1∪···∪Dn
ϕ.

Thus, by statement (5), statement (6), the Know-How of Empty Coalition ax-
iom, statement (7), the Knowledge of Empty Coalition axiom, and the Modus
Ponens inference rule,

X(w) ` Hq1+···+qn
D1∪···∪Dn

ϕ.

Then, by statement (8) and Lemma 3,

X(w) ` Hq1+···+qn
C ϕ. (11)

Next, we observe that
q1 + · · ·+ qn > p. (12)

Indeed, suppose the opposite. Thus, q1 + · · · + qn ≤ p. Then, statement (11)
implies that X(w) ` Hp

Cϕ by the Price Monotonicity axiom. Thus, ¬Hp
Cϕ /∈

X(w) due to the consistency of the set X(w), which contradicts the assumption
of the lemma.

Recall that, by the assumption of the case, either p = ∞ or there is no
formula H∞Dψ ∈ X(w) such that D is a nonempty subset of C and ∀a ∈ D(s(a) =
(ϕ,D,∞)). We consider these two sub-cases separately:
Case IIa: p =∞. In this case q1 + · · ·+ qn >∞ by inequality (12), which is a
contradiction.
Case IIb: there is no formula H∞Dψ ∈ X(w) such that D is a nonempty subset
of C and ∀a ∈ D(s(a) = (ψ,D,∞)). Thus, it follows from statements (5), (8),
and (9) that

qi 6=∞ for all i ≤ n. (13)

Let w′ be w. Since sets D1, . . . , Dn ⊆ C are pairwise disjoint and using Defini-
tion 7 together with equality (3), statement (9), and inequality (13), we conclude
that ∑

a∈C
‖δ(a)‖w′ ≥

∑
a∈D1

‖δ(a)‖w′ + · · ·+
∑
a∈Dn

‖δ(a)‖w′ (14)

=
∑
a∈D1

q1
|D1|

+ · · ·+
∑
a∈Dn

qn
|Dn|

= q1 + · · ·+ qn > p,

which proves item 1 of the lemma.
We now can assume that set Y is consistent. Then, by Lemma 2, this set

has a maximal consistent extension Ŷ . Let u be the sequence w :: ∅ :: (Ŷ , 0).
Note that u ∈ W by Definition 4 and ¬ϕ ∈ Y ⊆ Ŷ = X(w′) by the choice of
sets Y and Ŷ and the choice of the sequence u. To prove item 2 of the lemma
it is suffices to show that (w, δ, u) ∈M .
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Indeed, consider any formula Hq
Dψ ∈ X(w) such that δ(a) = (ψ,D, q) for

each a ∈ D. Then, δ(a) 6= ε for each a ∈ D. Thus, D ⊆ C due to equality (3).
Hence, ψ ∈ Y by the choice of set Y (note here that definition of set Y handles
cases of nonempty and empty set D separately). Then, ψ ∈ Y ⊆ Ŷ = X(u).
Therefore, (w, δ, u) ∈M by Definition 8. �
Next, we show that canonical game G(X0) satisfies nontermination condition of
Definition 2, item 6.

Lemma 16. For any state w ∈ W and any complete action profile δ ∈ ∆A

there is at least one state u ∈W such that (w, δ, u) ∈M .

Proof. Recall that ` ¬H∞A⊥ by the Unachievability of Falsehood axiom. Thus,
¬H∞A⊥ ∈ X(w) because set X(w) is consistent. Hence, by Lemma 15, there is
a complete action profile δ′ ∈ ∆A such that δ =A δ′ and at least one of the
following is true

1. there is a state w′ ∈W such that
∑

a∈C ‖δ′(a)‖w′ >∞ and w ∼C w′, or

2. there is u ∈W such that (w, δ′, u) ∈M and ¬⊥ ∈ X(u).

The first out of these two statements is false because the sum cannot be greater
than ∞. Thus, the second statement is true. Then, there is u ∈ W such that
(w, δ′, u) ∈M . Therefore, (w, δ, u) ∈M because δ =A δ

′. �

We are now ready to state and to prove the “truth lemma”.

Lemma 17. w 
 ϕ iff ϕ ∈ X(w).

Proof. We prove the lemma by induction on the structural complexity of for-
mula ϕ. If ϕ is a propositional variable, then the statement of the lemma follows
from Definition 3 and Definition 9. The case when formula ϕ is a negation or an
implication follows from Definition 3 and the maximality and the consistency
of the set X(w) in the standard way.

Suppose that formula ϕ has the form KCψ.
(⇒) : Assume that KCψ /∈ X(w). Thus, ¬KCψ ∈ X(w) because set X(w) is
maximal. Thus, by Lemma 14, there is a state w′ ∈W such that w ∼C w′ and
¬ϕ ∈ X(w′). Then, ϕ /∈ X(w′) because set X(w′) is consistent. Hence, w′ 1 ϕ
by the induction hypothesis. Therefore, w 1 KCϕ by Definition 3.
(⇐) : Assume that KCψ ∈ X(w). Consider any state w′ ∈ W such that w ∼C

w′. By Definition 3, it suffices to show that w 
 ψ. Indeed, by Lemma 13,
assumptions KCψ ∈ X(w) and w ∼C w′ imply that KCψ ∈ X(w′). Thus,
X(w′) ` ψ by the Truth axiom. Hence, ψ ∈ X(w′) by the maximality of set
X(w′). Therefore, w 
 ψ by the induction hypothesis.

Suppose that formula ϕ has the form Hp
Cψ.

(⇒) : Assume that Hp
Cψ /∈ X(w). Thus, ¬Hp

Cψ ∈ X(w) because set X(w) is
maximal. Consider any action profile s ∈ ∆C of coalition C. By Lemma 15,
there is a complete action profile δ ∈ ∆A such that s =C δ and at least one of
the following is true

(a) there is a state w′ ∈W such that
∑

a∈C ‖δ(a)‖w′ > p and w ∼C w′, or

19



(b) there is u ∈W such that (w, δ, u) ∈M and ¬ψ ∈ X(u).

In the first case, w 1 Hp
Cψ by part (5a) of Definition 3. In the second case, ψ /∈

X(u) because set X(u) is consistent. Thus, u 1 ψ by the induction hypothesis.
Let w′ = w. Then, w ∼C w′, s =C δ, (w′, δ, u) ∈ M , and u 1 ψ. Therefore,
w 1 Hp

Cψ by part (5b) of Definition 3.
(⇐) : Assume that Hp

Cψ ∈ X(w). Let strategy profile s ∈ ∆C of coalition C be
such that s(a) = (ψ,C, p) for each agent a ∈ C. By Definition 3, it suffices to
show that

(a) for each w′ ∈W , if w ∼C w′, then
∑

a∈C ‖s(a)‖w′ ≤ p,
(b) for any two states w′, u ∈ W and any complete action profile δ ∈ ∆A, if

w ∼C w′, s =C δ, and (w′, δ, u) ∈M , then u 
 ψ.

We show these two statements separately. To show statement (a), consider
any w′ ∈ W . If p = ∞, then

∑
a∈C ‖s(a)‖w′ ≤ ∞ = p. If C = ∅, then,∑

a∈C ‖s(a)‖w′ = 0 ≤ p because p ≥ 0 by Definition 1. Suppose now that
p <∞ and |C| > 0. Thus, by Definition 7,∑

a∈C
‖s(a)‖w′ =

∑
a∈C

p

|C|
= |C| × p

|C|
= p.

To show statement (b), consider any two states w′, u ∈ W and any complete
action profile δ ∈ ∆A such that w ∼C w′, s =C δ, and (w′, δ, u) ∈ M . It
suffices to show that u 
 ψ. Indeed, the assumption of the case Hp

Cψ ∈ X(w)
implies that X(w) ` KCH

p
Cψ by the Strategic Introspection axiom and the

Modus Ponens inference rule. Thus, KCH
p
Cψ ∈ X(w) by the maximality of

the set X(w). Hence, KCH
p
Cψ ∈ X(w′) by Lemma 13 and the assumption

w ∼C w′. Then, X(w′) ` Hp
Cψ by the Truth axiom and the Modus Ponens

inference rule. Thus, Hp
Cψ ∈ X(w′) because set X(w′) is maximal. Note also

that δ(a) = s(a) = (ψ,C, p) by the assumption s =C δ and the choice of action
profile s. Thus, assumption (w′, δ, u) ∈ M implies that ψ ∈ X(u) by Defini-
tion 8. Therefore, u 
 ψ by Lemma 17. �

Finally, we state and prove the strong completeness theorem for our logical
system.

Theorem 2. If Y 0 ϕ, then there is a state w of a game such that w 
 χ for
each χ ∈ Y and w 1 ϕ.

Proof. Assumption Y 0 ϕ implies that set Y ∪ {¬ϕ} is consistent. Let set of
formulae X0 be any maximal consistent extension of set Y ∪ {¬ϕ}. Such ex-
tension exists by Lemma 2. Consider canonical game G(X0). By Definition 4,
single-element sequence (X0, 0) is a state of game G(X0). We denote this state
by w0. Note that χ ∈ X0 = X(w0) for each χ ∈ Y by the choice of set X0 and
the choice of sequence w0. Similarly, ¬ϕ ∈ X(w0). Then, ϕ /∈ X(w0) because
set X(w0) is consistent. Therefore, w 
 χ for each χ ∈ Y and w 1 ϕ by the
induction hypothesis. �
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6. Conclusion

In this article we introduced modality Hp
Cϕ that stands for “not only coalition

C has a strategy to achieve ϕ, but the coalition also knows what this strategy
is and the coalition knows that it will cost at most p to execute the strategy”.
The main technical result is a sound and complete logical system that describes
the interplay between this modality and the distributed knowledge modality.

In this article we have chosen (a) to restrict the language to modalities with
non-negative superscripts and (b) to restrict the models to those that have
non-negative prices of actions. Neither of these restrictions is important for
the proof of the soundness. In the presence of restriction (a), our canonical
model construction produces a model with non-negative prices which satisfies
the constraint (b). If restriction (a) is removed, then our proof of completeness
will no longer work. Indeed, without this restriction, Definition 7 will assign
negative prices to some of the actions. As a result, inequality (14) might no
longer hold. More importantly, negative prices will deviate from the intended
meaning of the price of success that we have discussed in Section 2. For example,
suppose an agent has three actions priced at -3, 0, and 5. The negative price
represents a profit from the action. Suppose also that only the action priced at
5 guarantees the success. In this situation the price of the success must account
for the missed opportunity cost. Hence, the price of success should be 8, not 5.
Note that this is not consistent with Definition 3. Thus, a different setting is
needed to talk about negative prices, perhaps a setting that separates budget
and profit as we did in [36].

A possible extension of the current work is to study modality Hp
C for strate-

gies to achieve in multiple number of steps and for strategies to maintain. In
these cases, prices of actions on different steps could be added using a discount
factor. Know-how modality without cost parameter for these two settings has
been studied in [23, 19, 20, 21] and [18] respectively. Note that the former works
only deal with single-agent strategies because the Cooperation axiom does not
hold for coalition strategies to achieve in multiple number of steps.

It is often possible to show decidability of a modal logic by proving com-
pleteness with respect to a class of finite models. Such completeness is usually
established using filtration technique where maximal consistent sets of formulae
are replaced with maximal consistent sets of subformulae of a given formula.
In our case, this technique does not produce finite models because it does not
impose any limit on the length of the finite sequences in Definition 4. To put a
limit on the length of these sequences one might require that set Xi in this def-
inition only contains subformulae of set Xi−1. However, with this modification
Lemma 13 no longer holds. The decidability of the logical system proposed in
this article remains an open question.

References

[1] H. H. Chouinard, Auctions with and without the right of first refusal and
national park service concession contracts, American journal of agricultural

21



economics 87 (4) (2005) 1083–1088.

[2] Y.-M. Chiang, J. Sa-Aadu, Right of first refusal (rofr) effects in auc-
tions with reserve price: Empirical evidence from taiwanese government
land auctionsAvailable at SSRN: https://ssrn.com/abstract=2409599 or
http://dx.doi.org/10.2139/ssrn.2409599.

[3] D. I. Walker, Rethinking rights of first refusal, Stan. JL Bus. & Fin. 5.

[4] M. Pauly, Logic for social software, Ph.D. thesis, Institute for Logic, Lan-
guage, and Computation (2001).

[5] M. Pauly, A modal logic for coalitional power in games, Journal of Logic
and Computation 12 (1) (2002) 149–166. doi:10.1093/logcom/12.1.149.

[6] V. Goranko, Coalition games and alternating temporal logics, in: Pro-
ceedings of the 8th conference on Theoretical aspects of rationality and
knowledge, Morgan Kaufmann Publishers Inc., 2001, pp. 259–272.

[7] W. van der Hoek, M. Wooldridge, On the logic of cooperation and propo-
sitional control, Artificial Intelligence 164 (1) (2005) 81 – 119.

[8] S. Borgo, Coalitions in action logic, in: 20th International Joint Conference
on Artificial Intelligence, 2007, pp. 1822–1827.

[9] T. Ågotnes, P. Balbiani, H. van Ditmarsch, P. Seban, Group an-
nouncement logic, Journal of Applied Logic 8 (1) (2010) 62 – 81.
doi:10.1016/j.jal.2008.12.002.
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